如何在不重复代码的情况下操作多个条件

How to operate multiple conditions without having to repeat the code

我正在尝试创建一个从线性回归中得出结论的函数。函数如下:

  1. 如果(斜率的)P 值 > 0.05,打印“无线性关联”。
  2. 如果(斜率的)P 值 <= 0.05,则:
    .打印“存在线性关联”
    .如果斜率 > 0,打印“这两个变量是正相关的。”
    如果斜率 < 0,打印“这两个变量是负相关的。”
    .打印“线性回归模型可以解释 {r_squared} Y 量。”

这是我的代码。虽然它有效但看起来不太优雅,因为我重复了两次代码。 有没有办法让这段代码看起来更好?

conclusion <- function(mydata) {
  model <- lm(Y~X, data = mydata)
  
  p_value <- summary(model)$coefficients[2,4] 
  B <- summary(model)$coefficients[2,1]       
  r_squared <- summary(model)$r.squared       
  
  if(p_value > 0.05) {
    glue::glue("No linear association.")
  } else if (p_value <= 0.05 && B > 0) {
    glue::glue("Exist linear association.               
               There are {r_squared} amount of Y explainable by the linear regression model.
               Y and X are positively correlated."
               )
  } else {
    glue::glue("Exist linear association.               
               There are {r_squared} amount of Y explainable by the linear regression model.
               Y and X are negatively correlated."
    )
  }
}

这有帮助吗?

...
sign <- ifelse(B>0, "positively", "negatively")

if(p_value > 0.05) {
  glue::glue("No linear association.")
} else {
  glue::glue("Exist linear association.               
               There are {r_squared} amount of Y explainable by the linear regression model.
               Y and X are {sign} correlated.") 
  }