SparkContext 在伴随对象中不可序列化

SparkContext not serializable inside a companion object

我目前正在尝试扩展使用 Scala 和 Spark 的机器学习应用程序。我正在使用我在 Github

上找到的 Dieterich Lawson 之前项目的结构

https://github.com/dieterichlawson/admm

该项目基本上使用 SparkContext 构建训练样本块的 RDD,然后对这些集合中的每一个执行本地计算(例如求解线性系统)。

我遵循相同的方案,但对于我的本地计算,我需要对每个训练样本块执行 L-BFGS 算法。为此,我想使用 mlLib 中的 L-BFGS 算法,它具有以下签名。

runLBFGS(RDD<scala.Tuple2<Object,Vector>> data, Gradient gradient, 
         Updater updater, int numCorrections, double convergenceTol, 
         int maxNumIterations, double regParam, Vector initialWeights)

正如它所说,该方法将训练样本的 RDD[Object,Vector] 作为输入。问题是,在每个工作人员的本地,我不再保留数据的 RDD 结构。因此,我试图在矩阵的每个块上使用 SparkContext 的并行化函数。但是当我这样做时,我得到了一个序列化程序异常。 (确切的异常消息在问题的末尾)。

这是对我如何处理 SparkContext 的详细解释。

首先,在主应用程序中,它用于打开文本文件,并用于 class LogRegressionXUpdate 的工厂:

val A = sc.textFile("ds1.csv")
A.checkpoint
val f = LogRegressionXUpdate.fromTextFile(A,params.rho,1024,sc)

在应用中,class LogRegressionXUpdate 实现如下

class LogRegressionXUpdate(val training: RDD[(Double, NV)],
                           val rho: Double) extends Function1[BDV[Double],Double] with Prox  with Serializable{

def prox(x: BDV[Double], rho: Double): BDV[Double] = {
    val numCorrections = 10
    val convergenceTol = 1e-4
    val maxNumIterations = 20
    val regParam = 0.1
    val (weights, loss) = LBFGS.runLBFGS(
        training,
        new GradientForLogRegADMM(rho,fromBreeze(x)),
        new SimpleUpdater(),
        numCorrections,
        convergenceTol,
        maxNumIterations,
        regParam,
        fromBreeze(x))
    toBreeze(weights.toArray).toDenseVector
}

def apply(x: BDV[Double]): Double = {
    Math.pow(1,2.0)
}

}

具有以下伴生对象:

object LogRegressionXUpdate {
    def fromTextFile(file: RDD[String], rho: Double, blockHeight: Int = 1024, @transient sc: SparkContext): RDF[LogRegressionXUpdate] = {
        val fns = new BlockMatrix(file, blockHeight).blocks.
        map(X => new LogRegressionXUpdate(sc.parallelize((X(*,::).map(fila => (fila(-1),fromBreeze(fila(0 to -2))))).toArray),rho))
        new RDF[LogRegressionXUpdate](fns, 0L)
    }
}

虽然我并不是真的需要 SparkContext 在本地构建每个 RDD,但此构造函数导致了序列化错误。我已经搜索了这个问题的解决方案,但添加 @transient 并没有解决它。 然后,我的问题是:是否真的有可能构建这些 "second layer RDDs" 或我被迫执行 L-BFGS 算法的非分布式版本。 提前致谢!

错误日志:

Exception in thread "main" org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:315)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:305)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:132)
at org.apache.spark.SparkContext.clean(SparkContext.scala:1891)
at org.apache.spark.rdd.RDD$$anonfun$map.apply(RDD.scala:294)
at org.apache.spark.rdd.RDD$$anonfun$map.apply(RDD.scala:293)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:148)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:109)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:286)
at org.apache.spark.rdd.RDD.map(RDD.scala:293)
at admm.functions.LogRegressionXUpdate$.fromTextFile(LogRegressionXUpdate.scala:70)
at admm.examples.Lasso$.run(Lasso.scala:96)
at admm.examples.Lasso$$anonfun$main.apply(Lasso.scala:70)
at admm.examples.Lasso$$anonfun$main.apply(Lasso.scala:69)
at scala.Option.map(Option.scala:145)
at admm.examples.Lasso$.main(Lasso.scala:69)
at admm.examples.Lasso.main(Lasso.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:140)
Caused by: java.io.NotSerializableException: org.apache.spark.SparkContext
Serialization stack:
- object not serializable (class: org.apache.spark.SparkContext, value: org.apache.spark.SparkContext@20576557)
- field (class: admm.functions.LogRegressionXUpdate$$anonfun, name: sc, type: class org.apache.spark.SparkContext)
- object (class admm.functions.LogRegressionXUpdate$$anonfun, <function1>)
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:81)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:312)
... 21 more

RDDs 只能从驱动程序访问。每当你调用

myRDD.map(someObject.someMethod)

spark 序列化计算 someMethod 所需的任何内容,并将其发送给工作人员。在那里,该方法被反序列化,然后在每个分区上独立运行。

但是,您尝试使用 本身 使用 spark 的方法:您尝试创建一个新的 RDD。但是,这是不可能的,因为它们只能在驱动程序中创建。您看到的错误是 spark 尝试序列化 spark 上下文本身,因为每个块的计算都需要它。有关序列化的更多信息,请参阅 this 问题的第一个答案。

“...虽然我并不是真的需要 SparkContext 在本地构建每个 RDD”——实际上这正是您在调用 sc.parallelize 时正在做的事情。底线 - 您需要找到(或编写)L-BFGS 的本地实现。