P5.JS 3D 点图渲染极慢
P5.JS 3D Dot Diagram rendering extremely slow
我正在尝试将普通的 2D 图像(简单的 JPEG)转换为用户可以移动的 3D 点图。但是在尝试渲染那个点图时,程序变得非常慢。谁能指出我哪里出错了?
var x = [];
var y = [];
var z = [];
var colors = [];
var a = 0;
var counter = 0;
let img;
function preload() {
img = loadImage('https://www.paulwheeler.us/files/clooney.jpeg');
}
function setup() {
createCanvas(720, 400, WEBGL);
background(0);
img.resize(width / 3, height / 2);
for (let col = 0; col < img.width; col += 3) {
for (let row = 0; row < img.height; row += 3) {
let c = img.get(col, row);
let rgb_val = c[0] + c[1] + c[2]
colors[a] = c
x[a] = map(col, 0, 255, -125, 125)
y[a] = map(row, 0, 255, -125, 125)
z[a] = map(rgb_val, 0, 765, -50, 0)
stroke(c)
push();
a++
}
}
}
function draw() {
translate(0, 0, -50);
rotateY(frameCount * 0.1);
background(0);
for (var i = 0; i < a; i++) {
stroke(colors[i])
push();
translate(x[i], y[i], z[i]);
sphere(1);
pop();
}
orbitControl();
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.4.0/p5.js"></script>
正如我在上面的评论中提到的,在 p5.js 中大量绘制单个图元相对较慢。当从大型顶点缓冲区绘制三角形时,3d 图形得到最佳优化(基本上你预先计算 3d space 中的点,它们用于照明的法向量,以及通过索引将这些点引用到缓冲区中的三角形列表)。所以这里真正的赢家是第二个草图,它为你的点网格生成一些 p5.Geometry
并使用纹理坐标为每个点实现所需的颜色。
试验球体的细节,并在球体的描边和填充之间切换(对我的系统影响最小):
var x = [];
var y = [];
var z = [];
var colors = [];
var a = 0;
let img;
let fpsDisplay;
let strokeCheckbox;
let detailSlider;
let lastTime = 0;
function preload() {
img = loadImage('https://www.paulwheeler.us/files/clooney.jpeg');
}
function setup() {
createCanvas(720, 400, WEBGL);
background(0);
img.resize(width / 3, height / 2);
for (let col = 0; col < img.width; col += 3) {
for (let row = 0; row < img.height; row += 3) {
let c = img.get(col, row);
let rgb_val = c[0] + c[1] + c[2];
colors[a] = c;
x[a] = map(col, 0, img.width, -125, 125);
y[a] = map(row, 0, img.height, -125, 125);
z[a] = map(rgb_val, 0, 765, -50, 0);
a++;
}
}
fpsDisplay = createInput('0');
fpsDisplay.position(10, 10);
strokeCheckbox = createCheckbox('Stroke', false);
strokeCheckbox.position(10, 50);
strokeCheckbox.style('color', 'red');
detailSlider = createSlider(1, 24, 24);
detailSlider.position(10, 90);
}
function draw() {
// translate(0, 0, -50);
// rotateY(frameCount * 0.1);
background(0);
orbitControl(2, 1, 0.1);
noStroke();
noFill();
let useStroke = strokeCheckbox.checked();
let detail = detailSlider.value();
for (var i = 0; i < a; i++) {
if (useStroke) {
stroke(colors[i]);
} else {
fill(colors[i]);
}
push();
translate(x[i], y[i], z[i]);
sphere(1, detail, detail);
pop();
}
let t = millis();
fpsDisplay.value(`${1000 / (t - lastTime)}`);
lastTime = t;
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.4.0/p5.js"></script>
使用 p5.Geometry、UV 坐标和纹理(这在我的系统上达到 60 FPS):
const dotRadius = 1;
const detail = 4;
let img;
let fpsDisplay;
let lastTime = 0;
let geom;
function preload() {
img = loadImage('https://www.paulwheeler.us/files/clooney.jpeg');
}
function setup() {
console.log('Initializing');
createCanvas(720, 400, WEBGL);
// Because the spheres are so small, the default stroke makes them all black.
// You could also use strokeWeight(0.1);
noStroke();
img.resize(width / 3, height / 2);
const dotGrid = function() {
const sliceCount = this.detailX + 1;
let dotNumber = 0;
for (let col = 0; col < img.width; col += 3) {
for (let row = 0; row < img.height; row += 3) {
let c = img.get(col, row);
let rgb_val = c[0] + c[1] + c[2];
let xOff = map(col, 0, img.width, -125, 125);
let yOff = map(row, 0, img.height, -125, 125);
let zOff = map(rgb_val, 0, 765, -50, 0);
for (let i = 0; i <= this.detailY; i++) {
const v = i / this.detailY;
const phi = PI * v - PI / 2;
const cosPhi = cos(phi);
const sinPhi = sin(phi);
for (let j = 0; j <= this.detailX; j++) {
const u = j / this.detailX;
const theta = 2 * PI * u;
const cosTheta = cos(theta);
const sinTheta = sin(theta);
const p = createVector(
xOff + dotRadius * cosPhi * sinTheta,
yOff + dotRadius * sinPhi,
zOff + dotRadius * cosPhi * cosTheta
);
this.vertices.push(p);
this.vertexNormals.push(p);
// All vertices in each dot get the same UV coordinates
this.uvs.push(map(col, 0, img.width, 0, 1), map(row, 0, img.height, 0, 1));
}
}
// Generate faces for the current dot
// offset = number of vertices for previous dots.
let offset = dotNumber * (this.detailX + 1) * (this.detailY + 1);
let v1, v2, v3, v4;
for (let i = 0; i < this.detailY; i++) {
for (let j = 0; j < this.detailX; j++) {
v1 = i * sliceCount + j + offset;
v2 = i * sliceCount + j + 1 + offset;
v3 = (i + 1) * sliceCount + j + 1 + offset;
v4 = (i + 1) * sliceCount + j + offset;
this.faces.push([v1, v2, v4]);
this.faces.push([v4, v2, v3]);
}
}
dotNumber++;
}
}
console.log(`Dots: ${dotNumber}`);
console.log(`Vertices: ${this.vertices.length}`);
console.log(`Faces: ${this.faces.length}`);
};
geom = new p5.Geometry(detail, detail, dotGrid);
geom.gid = 'dot-grid';
fpsDisplay = createInput('0');
fpsDisplay.position(10, 10);
}
function draw() {
background(0);
orbitControl(2, 1, 0.1);
texture(img);
model(geom);
let t = millis();
fpsDisplay.value(`${1000 / (t - lastTime)}`);
lastTime = t;
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.4.0/p5.js"></script>
我正在尝试将普通的 2D 图像(简单的 JPEG)转换为用户可以移动的 3D 点图。但是在尝试渲染那个点图时,程序变得非常慢。谁能指出我哪里出错了?
var x = [];
var y = [];
var z = [];
var colors = [];
var a = 0;
var counter = 0;
let img;
function preload() {
img = loadImage('https://www.paulwheeler.us/files/clooney.jpeg');
}
function setup() {
createCanvas(720, 400, WEBGL);
background(0);
img.resize(width / 3, height / 2);
for (let col = 0; col < img.width; col += 3) {
for (let row = 0; row < img.height; row += 3) {
let c = img.get(col, row);
let rgb_val = c[0] + c[1] + c[2]
colors[a] = c
x[a] = map(col, 0, 255, -125, 125)
y[a] = map(row, 0, 255, -125, 125)
z[a] = map(rgb_val, 0, 765, -50, 0)
stroke(c)
push();
a++
}
}
}
function draw() {
translate(0, 0, -50);
rotateY(frameCount * 0.1);
background(0);
for (var i = 0; i < a; i++) {
stroke(colors[i])
push();
translate(x[i], y[i], z[i]);
sphere(1);
pop();
}
orbitControl();
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.4.0/p5.js"></script>
正如我在上面的评论中提到的,在 p5.js 中大量绘制单个图元相对较慢。当从大型顶点缓冲区绘制三角形时,3d 图形得到最佳优化(基本上你预先计算 3d space 中的点,它们用于照明的法向量,以及通过索引将这些点引用到缓冲区中的三角形列表)。所以这里真正的赢家是第二个草图,它为你的点网格生成一些 p5.Geometry
并使用纹理坐标为每个点实现所需的颜色。
试验球体的细节,并在球体的描边和填充之间切换(对我的系统影响最小):
var x = [];
var y = [];
var z = [];
var colors = [];
var a = 0;
let img;
let fpsDisplay;
let strokeCheckbox;
let detailSlider;
let lastTime = 0;
function preload() {
img = loadImage('https://www.paulwheeler.us/files/clooney.jpeg');
}
function setup() {
createCanvas(720, 400, WEBGL);
background(0);
img.resize(width / 3, height / 2);
for (let col = 0; col < img.width; col += 3) {
for (let row = 0; row < img.height; row += 3) {
let c = img.get(col, row);
let rgb_val = c[0] + c[1] + c[2];
colors[a] = c;
x[a] = map(col, 0, img.width, -125, 125);
y[a] = map(row, 0, img.height, -125, 125);
z[a] = map(rgb_val, 0, 765, -50, 0);
a++;
}
}
fpsDisplay = createInput('0');
fpsDisplay.position(10, 10);
strokeCheckbox = createCheckbox('Stroke', false);
strokeCheckbox.position(10, 50);
strokeCheckbox.style('color', 'red');
detailSlider = createSlider(1, 24, 24);
detailSlider.position(10, 90);
}
function draw() {
// translate(0, 0, -50);
// rotateY(frameCount * 0.1);
background(0);
orbitControl(2, 1, 0.1);
noStroke();
noFill();
let useStroke = strokeCheckbox.checked();
let detail = detailSlider.value();
for (var i = 0; i < a; i++) {
if (useStroke) {
stroke(colors[i]);
} else {
fill(colors[i]);
}
push();
translate(x[i], y[i], z[i]);
sphere(1, detail, detail);
pop();
}
let t = millis();
fpsDisplay.value(`${1000 / (t - lastTime)}`);
lastTime = t;
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.4.0/p5.js"></script>
使用 p5.Geometry、UV 坐标和纹理(这在我的系统上达到 60 FPS):
const dotRadius = 1;
const detail = 4;
let img;
let fpsDisplay;
let lastTime = 0;
let geom;
function preload() {
img = loadImage('https://www.paulwheeler.us/files/clooney.jpeg');
}
function setup() {
console.log('Initializing');
createCanvas(720, 400, WEBGL);
// Because the spheres are so small, the default stroke makes them all black.
// You could also use strokeWeight(0.1);
noStroke();
img.resize(width / 3, height / 2);
const dotGrid = function() {
const sliceCount = this.detailX + 1;
let dotNumber = 0;
for (let col = 0; col < img.width; col += 3) {
for (let row = 0; row < img.height; row += 3) {
let c = img.get(col, row);
let rgb_val = c[0] + c[1] + c[2];
let xOff = map(col, 0, img.width, -125, 125);
let yOff = map(row, 0, img.height, -125, 125);
let zOff = map(rgb_val, 0, 765, -50, 0);
for (let i = 0; i <= this.detailY; i++) {
const v = i / this.detailY;
const phi = PI * v - PI / 2;
const cosPhi = cos(phi);
const sinPhi = sin(phi);
for (let j = 0; j <= this.detailX; j++) {
const u = j / this.detailX;
const theta = 2 * PI * u;
const cosTheta = cos(theta);
const sinTheta = sin(theta);
const p = createVector(
xOff + dotRadius * cosPhi * sinTheta,
yOff + dotRadius * sinPhi,
zOff + dotRadius * cosPhi * cosTheta
);
this.vertices.push(p);
this.vertexNormals.push(p);
// All vertices in each dot get the same UV coordinates
this.uvs.push(map(col, 0, img.width, 0, 1), map(row, 0, img.height, 0, 1));
}
}
// Generate faces for the current dot
// offset = number of vertices for previous dots.
let offset = dotNumber * (this.detailX + 1) * (this.detailY + 1);
let v1, v2, v3, v4;
for (let i = 0; i < this.detailY; i++) {
for (let j = 0; j < this.detailX; j++) {
v1 = i * sliceCount + j + offset;
v2 = i * sliceCount + j + 1 + offset;
v3 = (i + 1) * sliceCount + j + 1 + offset;
v4 = (i + 1) * sliceCount + j + offset;
this.faces.push([v1, v2, v4]);
this.faces.push([v4, v2, v3]);
}
}
dotNumber++;
}
}
console.log(`Dots: ${dotNumber}`);
console.log(`Vertices: ${this.vertices.length}`);
console.log(`Faces: ${this.faces.length}`);
};
geom = new p5.Geometry(detail, detail, dotGrid);
geom.gid = 'dot-grid';
fpsDisplay = createInput('0');
fpsDisplay.position(10, 10);
}
function draw() {
background(0);
orbitControl(2, 1, 0.1);
texture(img);
model(geom);
let t = millis();
fpsDisplay.value(`${1000 / (t - lastTime)}`);
lastTime = t;
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.4.0/p5.js"></script>