这些时间序列相关性在 R 中意味着什么?

what do these time series correlations mean in R?

假设我的2个时间序列数据集如下:

temp <- matrix(c(12,8,9,11,10,3,7,2,4), byrow = TRUE, ncol = 3)
rownames(temp) <- c("Denver", "LA", "NY")
colnames(temp) <- c("day-1", "day-2", "day-3")
humidity <- matrix(c(70,67,34,45,56,47,68,74,36), byrow = TRUE, ncol = 3)
colnames(humidity)<- c("day-1", "day-2", "day-3")
rownames(humidity)<- c("Denver", "LA", "NY")


> temp
       day-1 day-2 day-3
Denver    12     8     9
LA        11    10     3
NY         7     2     4


> humidity
       day-1 day-2 day-3
Denver    70    67    34
LA        45    56    47
NY        68    74    36



> cor(humidity)
           day-1      day-2      day-3
day-1  1.0000000  0.8924544 -0.9974590
day-2  0.8924544  1.0000000 -0.8580461
day-3 -0.9974590 -0.8580461  1.0000000

> cor(temp)
          day-1     day-2     day-3
day-1 1.0000000 0.9078413 0.5291067
day-2 0.9078413 1.0000000 0.1245339
day-3 0.5291067 0.1245339 1.0000000


> cor(humidity, temp)
           day-1      day-2      day-3
day-1 -0.2584615 -0.6397084  0.6829690
day-2 -0.6664738 -0.9176629  0.2799863
day-3  0.1889822  0.5833240 -0.7332730

我不确定如何将其解释为时间序列?
1- 哪个 cor 显示变量是否相关?
2- 为什么不忽略城市?
3- 在第三个 cor(humidity, temp) 中,主对角线值不是 cor 矩阵中的一个。怎么来的?

第三个矩阵(cor(humidity, temp))的第(i,j)个元素显示了humidity的第i列和temp的第j列之间的相关性。插图:

cor(c(12,11,7),c(70,45,68)) ## day-1 humidities vs day-1 temps (m[1,1])
cor(c(8,10,2), c(70,45,68)) ## day-2 humidities vs day-1 temps (m[2,1])

如果您设置

,可能更容易解释结果
cc <- cor(humidity, temp)
names(dimnames(cc)) <- c("humidity", "temp")