Select data.table R 中列的子集

Select subset of columns in data.table R

我有一个包含一堆列的数据 table,例如:

dt<-data.table(matrix(runif(10*10),10,10))

我想对数据 table 执行一些操作,例如生成相关矩阵 (cor(dt))。为此,我想删除一些包含非数字值或超出特定范围的值的列。

假设我想找到排除 V1、V2、V3 和 V5 的相关矩阵。

这是我目前的做法:

cols<-!(colnames(dt)=="V1" | colnames(dt)=="V2" | colnames(dt)=="V3" | colnames(dt)=="V5")
new_dt<-subset(dt,,cols)
cor(new_dt)

我觉得这很麻烦,考虑到 data.table 语法通常很优雅。有更好的方法吗?

这似乎是一个进步:

> cols<-!(colnames(dt) %in% c("V1","V2","V3","V5"))
> new_dt<-subset(dt,,cols)
> cor(new_dt)
            V4          V6          V7          V8         V9         V10
V4   1.0000000  0.14141578 -0.44466832  0.23697216 -0.1020074  0.48171747
V6   0.1414158  1.00000000 -0.21356218 -0.08510977 -0.1884202 -0.22242274
V7  -0.4446683 -0.21356218  1.00000000 -0.02050846  0.3209454 -0.15021528
V8   0.2369722 -0.08510977 -0.02050846  1.00000000  0.4627034 -0.07020571
V9  -0.1020074 -0.18842023  0.32094540  0.46270335  1.0000000 -0.19224973
V10  0.4817175 -0.22242274 -0.15021528 -0.07020571 -0.1922497  1.00000000

这个不太容易掌握,但可能对需要通过数字向量指定列的情况有用:

subset(dt, , !grepl(paste0("V", c(1:3,5),collapse="|"),colnames(dt) ))

使用with=FALSE:

cols = paste("V", c(1,2,3,5), sep="")

dt[, !cols, with=FALSE]

我建议阅读 "Introduction to data.table" 小插图。


更新:v1.10.2开始,您还可以:

dt[, ..cols]

请参阅 v1.10.2 here 下的第一个新闻项目以获取更多说明。

你可以做到

dt[, !c("V1","V2","V3","V5")]

获得

            V4         V6         V7        V8         V9        V10
 1: 0.88612076 0.94727825 0.50502208 0.6702523 0.24186706 0.96263313
 2: 0.11121752 0.13969145 0.19092645 0.9589867 0.27968190 0.07796870
 3: 0.50179822 0.10641301 0.08540322 0.3297847 0.03643195 0.18082180
 4: 0.09787517 0.07312777 0.88077548 0.3218041 0.75826099 0.55847774
 5: 0.73475574 0.96644484 0.58261312 0.9921499 0.78962675 0.04976212
 6: 0.88861117 0.85690337 0.27723130 0.3662264 0.50881663 0.67402625
 7: 0.33933983 0.83392047 0.30701697 0.6138122 0.85107176 0.58609504
 8: 0.89907094 0.61389815 0.19957386 0.3968331 0.78876682 0.90546328
 9: 0.54136123 0.08274569 0.25190790 0.1920462 0.15142604 0.12134807
10: 0.36511064 0.88117171 0.05730210 0.9441072 0.40125023 0.62828674

使用 dplyr 的选项

require(dplyr)
dt<-as.data.frame(matrix(runif(10*10),10,10))
dt <- select(dt, -V1, -V2, -V3, -V4)
cor(dt)

另一种选择是使用 .SDcols

cols = paste0("V", c(1,2,3,5))
dt[, .SD, .SDcols=-cols]

要按列索引进行子集化(以避免键入它们的名称),您可以这样做

dt[, .SD, .SDcols = -c(1:3, 5L)]

结果似乎还可以

            V4          V6         V7         V8         V9       V10
 1: 0.51500037 0.919066234 0.49447244 0.19564261 0.51945102 0.7238604
 2: 0.36477648 0.828889808 0.04564637 0.20265215 0.32255945 0.4483778
 3: 0.10853112 0.601278633 0.58363636 0.47807015 0.58061000 0.2584015
 4: 0.57569100 0.228642846 0.25734995 0.79528506 0.52067802 0.6644448
 5: 0.07873759 0.840349039 0.77798153 0.48699653 0.98281006 0.4480908
 6: 0.31347303 0.670762371 0.04591664 0.03428055 0.35916057 0.1297684
 7: 0.45374290 0.957848949 0.99383496 0.43939774 0.33470618 0.9429592
 8: 0.99403107 0.009750809 0.78816609 0.34713435 0.57937680 0.9227709
 9: 0.62776909 0.400467655 0.49433474 0.81536420 0.01637135 0.4942351
10: 0.10318372 0.177712847 0.27678497 0.59554454 0.29532020 0.7117959

如果不强制指定列名:

> cor(dt[, !c(1:3, 5)])
             V4          V6          V7         V8          V9         V10
V4   1.00000000 -0.50472635 -0.07123705  0.9089868 -0.17232607 -0.77988709
V6  -0.50472635  1.00000000  0.05757776 -0.2374420  0.67334474  0.29476983
V7  -0.07123705  0.05757776  1.00000000 -0.1812176 -0.36093750  0.01102428
V8   0.90898683 -0.23744196 -0.18121755  1.0000000  0.21372140 -0.75798418
V9  -0.17232607  0.67334474 -0.36093750  0.2137214  1.00000000 -0.01179544
V10 -0.77988709  0.29476983  0.01102428 -0.7579842 -0.01179544  1.00000000