如何根据时间增量删除重复行,同时保留该记录的最新出现?

How drop duplicate rows based on a time delta whilst keep the latest occurrence of that record?

我有一个 table 的形式:

ID DATE_ENCOUNTER LOAD
151336 2017-08-22 40
151336 2017-08-23 40
151336 2017-08-24 40
151336 2017-08-25 40
151336 2017-09-05 50
151336 2017-09-06 50
151336 2017-10-16 51
151336 2017-10-17 51
151336 2017-10-18 51
151336 2017-10-30 50
151336 2017-10-31 50
151336 2017-11-01 50
151336 2017-12-13 62
151336 2018-01-03 65
151336 2018-02-09 60

虽然日期不一样,但有些记录是重复的(仅在 4 天的增量内)。如果 timestamps/dates 接近(在 4 天内),如何在数据框中删除重复项(最早的记录)天增量)但不相同。结果应显示如下 table:

ID DATE_ENCOUNTER LOAD
151336 2017-08-25 40
151336 2017-09-06 50
151336 2017-10-18 51
151336 2017-11-01 50
151336 2017-12-13 62
151336 2018-01-03 65
151336 2018-02-09 60

我试过:

m = df.groupby('ID').DATE_ENCOUNTER.apply(lambda x: x.diff().dt.days < 4)
m2 = df.ID.duplicated(keep=false) & (m | m.shift(-1))
df_dedup2 = df[~m2]

下面是一些生成数据框的代码:

import pandas as pd
details = {
    'ID':[151336,151336,151336,151336,151336,151336,151336,151336,151336,151336,151336,151336,151336,151336,151336],
    'DATE_ENCOUNTER':['2017-08-22','2017-08-23','2017-08-24','2017-08-25','2017-09-05','2017-09-06','2017-10-16','2017-10-17','2017-10-18','2017-10-30','2017-10-31','2017-11-01','2017-12-13','2018-01-03','2018-02-09'],
    'LOAD':[40,40,40,40,50,50,51,51,51,50,50,50,62,65,60]
}
df=pd.DataFrame(details)

注意有更多字段和更多 ID。

您可以使用:

#Convert to datetime format if not already in datetime
#df['DATE_ENCOUNTER'] = pd.to_datetime(df['DATE_ENCOUNTER'])

#Sort DATE_ENCOUNTER within the same ID if not already in this sequence
#df = df.sort_values(by=['ID', 'DATE_ENCOUNTER'])
# reuse your code of mask `m`
m = df.groupby('ID').DATE_ENCOUNTER.apply(lambda x: x.diff().dt.days < 4)

# set grouping of consecutive entries within 4 days difference within the same `ID` 
g = (~m).groupby(df['ID']).cumsum()

# pick the last entry in each group
df.groupby(['ID', g], as_index=False).last()

结果:

       ID DATE_ENCOUNTER  LOAD
0  151336     2017-08-25    40
1  151336     2017-09-06    50
2  151336     2017-10-18    51
3  151336     2017-11-01    50
4  151336     2017-12-13    62
5  151336     2018-01-03    65
6  151336     2018-02-09    60

您可以使用:

df[(df.groupby('ID')
      ['DATE_ENCOUNTER']
      .diff(-1).dt.days.mul(-1) # calculate the difference
      .fillna(float('inf'))     # make sure last row is kept
      .ge(4)                    # select diff >= 4
   )]

输出:

        ID DATE_ENCOUNTER  LOAD
3   151336     2017-08-25    40
5   151336     2017-09-06    50
8   151336     2017-10-18    51
11  151336     2017-11-01    50
12  151336     2017-12-13    62
13  151336     2018-01-03    65
14  151336     2018-02-09    60