在现有数据框中插入一个级别 o,以便将 4 列分组为一个
Insert a level o in the existing data frame such that 4 columns are grouped as one
我想为我的数据框做多重索引,这样 MAE、MSE、RMSE、MPE 被组合在一起并被赋予一个新的索引级别。同样,其余四个应分组在同一级别但名称不同
> mux3 = pd.MultiIndex.from_product([list('ABCD'),list('1234')],
> names=['one','two'])###dummy data
> df3 = pd.DataFrame(np.random.choice(10, (3, len(mux))), columns=mux3) #### dummy data frame
> print(df3) #intended output required for the data frame in the picture given below
假设列组已经按照适当的顺序排列,我们可以简单地创建一个 np.arange
over the length of the columns and floor divide by 4 to get groups and create a simple MultiIndex.from_arrays
.
示例输入和输出:
import numpy as np
import pandas as pd
initial_index = [1, 2, 3, 4] * 3
np.random.seed(5)
df3 = pd.DataFrame(
np.random.choice(10, (3, len(initial_index))), columns=initial_index
)
1 2 3 4 1 2 3 4 1 2 3 4 # Column headers are in repeating order
0 3 6 6 0 9 8 4 7 0 0 7 1
1 5 7 0 1 4 6 2 9 9 9 9 1
2 2 7 0 5 0 0 4 4 9 3 2 4
# Create New Columns
df3.columns = pd.MultiIndex.from_arrays([
np.arange(len(df3.columns)) // 4, # Group Each set of 4 columns together
df3.columns # Keep level 1 the same as current columns
], names=['one', 'two']) # Set Names (optional)
df3
one 0 1 2
two 1 2 3 4 1 2 3 4 1 2 3 4
0 3 6 6 0 9 8 4 7 0 0 7 1
1 5 7 0 1 4 6 2 9 9 9 9 1
2 2 7 0 5 0 0 4 4 9 3 2 4
如果列的顺序是混合的:
np.random.seed(5)
df3 = pd.DataFrame(
np.random.choice(10, (3, 8)), columns=[1, 1, 3, 2, 4, 3, 2, 4]
)
df3
1 1 3 2 4 3 2 4 # Cannot select groups positionally
0 3 6 6 0 9 8 4 7
1 0 0 7 1 5 7 0 1
2 4 6 2 9 9 9 9 1
如果需要,我们可以转换 Index.to_series
then enumerate columns using groupby cumcount
then sort_index
以获得顺序:
df3.columns = pd.MultiIndex.from_arrays([
# Enumerate Groups to create new level 0 index
df3.columns.to_series().groupby(df3.columns).cumcount(),
df3.columns
], names=['one', 'two']) # Set Names (optional)
# Sort to Order Correctly
# (Do not sort before setting columns it will break alignment with data)
df3 = df3.sort_index(axis=1)
df3
one 0 1
two 1 2 3 4 1 2 3 4 # Notice Data has moved with headers
0 3 0 6 9 6 4 8 7
1 0 1 7 5 0 0 7 1
2 4 9 2 9 6 9 9 1
我想为我的数据框做多重索引,这样 MAE、MSE、RMSE、MPE 被组合在一起并被赋予一个新的索引级别。同样,其余四个应分组在同一级别但名称不同
> mux3 = pd.MultiIndex.from_product([list('ABCD'),list('1234')],
> names=['one','two'])###dummy data
> df3 = pd.DataFrame(np.random.choice(10, (3, len(mux))), columns=mux3) #### dummy data frame
> print(df3) #intended output required for the data frame in the picture given below
假设列组已经按照适当的顺序排列,我们可以简单地创建一个 np.arange
over the length of the columns and floor divide by 4 to get groups and create a simple MultiIndex.from_arrays
.
示例输入和输出:
import numpy as np
import pandas as pd
initial_index = [1, 2, 3, 4] * 3
np.random.seed(5)
df3 = pd.DataFrame(
np.random.choice(10, (3, len(initial_index))), columns=initial_index
)
1 2 3 4 1 2 3 4 1 2 3 4 # Column headers are in repeating order
0 3 6 6 0 9 8 4 7 0 0 7 1
1 5 7 0 1 4 6 2 9 9 9 9 1
2 2 7 0 5 0 0 4 4 9 3 2 4
# Create New Columns
df3.columns = pd.MultiIndex.from_arrays([
np.arange(len(df3.columns)) // 4, # Group Each set of 4 columns together
df3.columns # Keep level 1 the same as current columns
], names=['one', 'two']) # Set Names (optional)
df3
one 0 1 2
two 1 2 3 4 1 2 3 4 1 2 3 4
0 3 6 6 0 9 8 4 7 0 0 7 1
1 5 7 0 1 4 6 2 9 9 9 9 1
2 2 7 0 5 0 0 4 4 9 3 2 4
如果列的顺序是混合的:
np.random.seed(5)
df3 = pd.DataFrame(
np.random.choice(10, (3, 8)), columns=[1, 1, 3, 2, 4, 3, 2, 4]
)
df3
1 1 3 2 4 3 2 4 # Cannot select groups positionally
0 3 6 6 0 9 8 4 7
1 0 0 7 1 5 7 0 1
2 4 6 2 9 9 9 9 1
如果需要,我们可以转换 Index.to_series
then enumerate columns using groupby cumcount
then sort_index
以获得顺序:
df3.columns = pd.MultiIndex.from_arrays([
# Enumerate Groups to create new level 0 index
df3.columns.to_series().groupby(df3.columns).cumcount(),
df3.columns
], names=['one', 'two']) # Set Names (optional)
# Sort to Order Correctly
# (Do not sort before setting columns it will break alignment with data)
df3 = df3.sort_index(axis=1)
df3
one 0 1
two 1 2 3 4 1 2 3 4 # Notice Data has moved with headers
0 3 0 6 9 6 4 8 7
1 0 1 7 5 0 0 7 1
2 4 9 2 9 6 9 9 1