如何扩展预测值?

How to extend predicted value?

这是我从this link

得到的示例代码
import pandas as pd
from sklearn import linear_model
import statsmodels.api as sm

Stock_Market = {'Year': [2017,2017,2017,2017,2017,2017,2017,2017,2017,2017,2017,2017,2016,2016,2016,2016,2016,2016,2016,2016,2016,2016,2016,2016],
                'Month': [12, 11,10,9,8,7,6,5,4,3,2,1,12,11,10,9,8,7,6,5,4,3,2,1],
                'Interest_Rate': [2.75,2.5,2.5,2.5,2.5,2.5,2.5,2.25,2.25,2.25,2,2,2,1.75,1.75,1.75,1.75,1.75,1.75,1.75,1.75,1.75,1.75,1.75],
                'Unemployment_Rate': [5.3,5.3,5.3,5.3,5.4,5.6,5.5,5.5,5.5,5.6,5.7,5.9,6,5.9,5.8,6.1,6.2,6.1,6.1,6.1,5.9,6.2,6.2,6.1],
                'Stock_Index_Price': [1464,1394,1357,1293,1256,1254,1234,1195,1159,1167,1130,1075,1047,965,943,958,971,949,884,866,876,822,704,719]        
                }

df = pd.DataFrame(Stock_Market,columns=['Year','Month','Interest_Rate','Unemployment_Rate','Stock_Index_Price'])

X = df[['Interest_Rate','Unemployment_Rate']] # here we have 2 variables for multiple regression. If you just want to use one variable for simple linear regression, then use X = df['Interest_Rate'] for example.Alternatively, you may add additional variables within the brackets
Y = df['Stock_Index_Price']
 
# with sklearn
regr = linear_model.LinearRegression()
regr.fit(X, Y)

print('Intercept: \n', regr.intercept_)
print('Coefficients: \n', regr.coef_)

# prediction with sklearn
New_Interest_Rate = 2.75
New_Unemployment_Rate = 5.3
print ('Predicted Stock Index Price: \n', regr.predict([[New_Interest_Rate ,New_Unemployment_Rate]]))

# with statsmodels
X = sm.add_constant(X) # adding a constant
 
model = sm.OLS(Y, X).fit()
predictions = model.predict(X) 
 
print_model = model.summary()
print(print_model)

此代码仅向前预测一个值,但我想向前预测五个值。

New_Interest_Rate = 2.75, 3, 4, 1, 2
New_Unemployment_Rate = 5.3, 4, 3, 2, 1

我该怎么做?我使用 jupyter 笔记本。谢谢。

试试这个:

New_Interest_Rate = [2.75, 3, 4, 1, 2]
New_Unemployment_Rate = [5.3, 4, 3, 2, 1]
for i in range(len(New_Interest_Rate)):
    print (str(i+1) + ' - Predicted Stock Index Price: \n', 
           regr.predict([[New_Interest_Rate[i] ,New_Unemployment_Rate[i]]]))

而不是这些行:

New_Interest_Rate = 2.75
New_Unemployment_Rate = 5.3
print ('Predicted Stock Index Price: \n', regr.predict([[New_Interest_Rate ,New_Unemployment_Rate]]))