PyVista `add_volume`:乱码输出且比 ParaView 慢

PyVista `add_volume`: Garbled Output & Slower than ParaView

问题:

2021 年 9 月 14 日更新: 将问题进一步简化为更小的 MRE。经过一些分析,似乎 Qt 线程不是罪魁祸首,因此删除了相应的 Qt 代码。


  1. pyvista 没有沿着正确的轴绘制我的体积并且输出是乱码。 ParaView 另一方面,可以正确绘制事物。我该如何解决这个问题?

    (注意: 我不能分享实际数据,因为它是机密的。但是,下面你可以看到 pyvista 沿着z-axis,其实应该是沿着x-axis,而且是乱码。我在ParaView中显示边界框。

    无论我使用 fixed_point 还是 smart 体积映射器,结果都是一样的。我使用 fixed_point 因为我在 Windows.)

pyvista:

ParaView:

  1. pyvista 中绘制体积比在 ParaView 中慢得多。有什么方法可以使它更快吗?

    我的代码使用 pyvistaParaView 的时间是

    My Code: ~13 minutes, 9 seconds
    ParaView 5.9.1 (installed pre-built binary): ~24 seconds
    

    我已经使用 cProfile 来帮助识别问题区域(请参阅下文)。


设置:

数据

没有。 DICOM 文件数: 1,172
DICOM 文件大小: 5.96 MB
总扫描大小: 7GB
DICOM 图像尺寸: 2402 x 1301 像素

系统/硬件

OS: Windows 10 Professional x64-bit, Build 1909
CPU: 2x Intel(R) Xeon(R) Gold 6248R
磁盘: 2TB NVMe M.2 SSD
内存: 192 GB DDR4
计算 GPU: 2x NVIDIA Quadro RTX8000
显示 GPU: 1x NVIDIA Quadro RTX4000

软件

Python: 3.8.10 x64 位
pyvista:0.32.1
VTK:9.0.3
ParaView:5.9.1
IDE: VSCode 1.59.0


代码:

import cProfile
import io
import os
import pstats

import numpy as np
import pyvista as pv
import SimpleITK as sitk
from SimpleITK import ImageSeriesReader
from trimesh import points

pv.rcParams["volume_mapper"] = "fixed_point"  # Windows
folder = "C:\path\to\DICOM\stack\folder"


def profile(fnc):
    """Wrapper for cProfile"""

    def inner(*args, **kwargs):
        pr = cProfile.Profile()
        pr.enable()
        retval = fnc(*args, **kwargs)
        pr.disable()
        s = io.StringIO()
        sortby = "cumulative"
        ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
        ps.print_stats()
        print(s.getvalue())
        return retval

    return inner


@profile
def plot_volume(folder):
    p = pv.Plotter()

    dicom_reader = ImageSeriesReader()
    dicom_files = dicom_reader.GetGDCMSeriesFileNames(folder)
    dicom_reader.SetFileNames(dicom_files)
    scan = dicom_reader.Execute()

    origin = scan.GetOrigin()
    spacing = scan.GetSpacing()
    direction = scan.GetDirection()

    data = sitk.GetArrayFromImage(scan)
    data = (data // 256).astype(np.uint8)  # Cast 16-bit to 8-bit

    volume = pv.UniformGrid(data.shape)

    volume.origin = origin
    volume.spacing = spacing
    volume.direction = direction

    volume.point_data["Values"] = data.flatten(order="F")
    volume.set_active_scalars("Values")

    p.add_volume(
        volume,
        opacity="sigmoid",
        reset_camera=True,
    )
    p.add_axes()

    p.show()


if __name__ == "__main__":
    plot_volume(folder)

输出:

WARNING: In d:\a\sitk-build\itk-prefix\include\itk-5.2\itkImageSeriesReader.hxx, line 480
ImageSeriesReader (0000021B082D3360): Non uniform sampling or missing slices detected,  maximum nonuniformity:7.39539e-07

Ordered by: cumulative time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1   11.220   11.220  772.300  772.300 gui\main.py:61(plot_volume)
        1   86.881   86.881  648.445  648.445 .venv\lib\site-packages\pyvista\plotting\plotting.py:2271(add_volume)
        1    0.000    0.000  373.896  373.896 .venv\lib\site-packages\pyvista\core\filters\data_set.py:2022(cell_data_to_point_data)
        1    0.001    0.001  371.802  371.802 .venv\lib\site-packages\pyvista\core\filters\__init__.py:30(_update_alg)
        2  371.802  185.901  371.802  185.901 {method 'Update' of 'vtkmodules.vtkCommonExecutionModel.vtkAlgorithm' objects}
  606/273    8.916    0.015  134.346    0.492 {built-in method numpy.core._multiarray_umath.implement_array_function}
        3   17.923    5.974  101.495   33.832 .venv\lib\site-packages\numpy\lib\nanfunctions.py:68(_replace_nan)
      693   85.541    0.123   85.541    0.123 {built-in method numpy.array}
        2    0.001    0.000   74.715   37.358 <__array_function__ internals>:2(nanmin)
        2    0.718    0.359   69.822   34.911 .venv\lib\site-packages\numpy\lib\nanfunctions.py:228(nanmin)
       57   46.992    0.824   46.992    0.824 {method 'astype' of 'numpy.ndarray' objects}
        2   45.969   22.985   45.969   22.985 {method 'flatten' of 'numpy.ndarray' objects}
        1    0.000    0.000   45.027   45.027 <__array_function__ internals>:2(nanmax)
        1    0.253    0.253   42.448   42.448 .venv\lib\site-packages\numpy\lib\nanfunctions.py:343(nanmax)
        1    0.000    0.000   25.705   25.705 .venv\lib\site-packages\pyvista\plotting\plotting.py:4634(show)
        3    0.000    0.000   20.822    6.941 .venv\lib\site-packages\pyvista\core\datasetattributes.py:539(set_array)
        3    0.000    0.000   18.391    6.130 .venv\lib\site-packages\pyvista\core\datasetattributes.py:730(_prepare_array)
       11    0.000    0.000   18.391    1.672 .venv\lib\site-packages\pyvista\utilities\helpers.py:132(convert_array)
        4    0.001    0.000   18.391    4.598 .venv\lib\site-packages\vtkmodules\util\numpy_support.py:104(numpy_to_vtk)
        1   17.685   17.685   17.685   17.685 {method 'DeepCopy' of 'vtkmodules.vtkCommonCore.vtkDataArray' objects}
        1    0.000    0.000   16.113   16.113 .venv\lib\site-packages\SimpleITK\SimpleITK.py:7854(Execute)
        1   16.113   16.113   16.113   16.113 {built-in method SimpleITK._SimpleITK.ImageSeriesReader_Execute}
        1    0.000    0.000   15.542   15.542 .venv\lib\site-packages\pyvista\plotting\render_window_interactor.py:615(start)
        1   15.542   15.542   15.542   15.542 {method 'Start' of 'vtkmodules.vtkRenderingCore.vtkRenderWindowInteractor' objects}
        1    0.000    0.000   14.598   14.598 <__array_function__ internals>:2(percentile)
        1    0.000    0.000   14.598   14.598 .venv\lib\site-packages\numpy\lib\function_base.py:3724(percentile)
        1    0.000    0.000   14.598   14.598 .venv\lib\site-packages\numpy\lib\function_base.py:3983(_quantile_unchecked)
        1    0.235    0.235   14.598   14.598 .venv\lib\site-packages\numpy\lib\function_base.py:3513(_ureduce)
        1    0.000    0.000   14.362   14.362 .venv\lib\site-packages\numpy\lib\function_base.py:4018(_quantile_ureduce_func)
        1   12.671   12.671   12.671   12.671 {method 'partition' of 'numpy.ndarray' objects}
        2    0.000    0.000   10.132    5.066 .venv\lib\site-packages\pyvista\plotting\plotting.py:1185(render)
        1   10.132   10.132   10.132   10.132 {method 'Render' of 'vtkmodules.vtkRenderingOpenGL2.vtkOpenGLRenderWindow' objects}
       61    0.000    0.000    9.805    0.161 .venv\lib\site-packages\numpy\core\fromnumeric.py:69(_wrapreduction)
       63    9.804    0.156    9.805    0.156 {method 'reduce' of 'numpy.ufunc' objects}
        2    0.000    0.000    6.170    3.085 <__array_function__ internals>:2(amin)
        2    0.000    0.000    6.170    3.085 .venv\lib\site-packages\numpy\core\fromnumeric.py:2763(amin)
        2    0.000    0.000    6.170    3.085 {method 'min' of 'numpy.ndarray' objects}
        2    0.000    0.000    6.170    3.085 .venv\lib\site-packages\numpy\core\_methods.py:42(_amin)
        1    0.000    0.000    6.073    6.073 .venv\lib\site-packages\SimpleITK\SimpleITK.py:7828(GetGDCMSeriesFileNames)
        1    6.073    6.073    6.073    6.073 {built-in method SimpleITK._SimpleITK.ImageSeriesReader_GetGDCMSeriesFileNames}
        1    0.000    0.000    3.413    3.413 .venv\lib\site-packages\SimpleITK\extra.py:252(GetArrayFromImage)
        1    0.000    0.000    3.358    3.358 <__array_function__ internals>:2(amax)
        1    0.000    0.000    3.358    3.358 .venv\lib\site-packages\numpy\core\fromnumeric.py:2638(amax)
        1    0.000    0.000    3.358    3.358 {method 'max' of 'numpy.ndarray' objects}
        1    0.000    0.000    3.358    3.358 .venv\lib\site-packages\numpy\core\_methods.py:38(_amax)
        2    0.000    0.000    2.807    1.403 .venv\lib\site-packages\pyvista\core\datasetattributes.py:212(__setitem__)
        1    0.000    0.000    2.764    2.764 .venv\lib\site-packages\pyvista\core\dataset.py:1637(__setitem__)
        3    2.430    0.810    2.430    0.810 {method 'AddArray' of 'vtkmodules.vtkCommonDataModel.vtkFieldData' objects}
        2    2.290    1.145    2.290    1.145 .venv\lib\site-packages\pyvista\core\pyvista_ndarray.py:53(__setitem__)
        1    0.000    0.000    2.093    2.093 .venv\lib\site-packages\pyvista\core\filters\__init__.py:39(_get_output)
        2    0.000    0.000    2.093    1.046 .venv\lib\site-packages\pyvista\core\grid.py:291(__init__)
        1    0.000    0.000    2.092    2.092 .venv\lib\site-packages\pyvista\utilities\helpers.py:797(wrap)
        1    0.000    0.000    2.092    2.092 .venv\lib\site-packages\pyvista\core\dataobject.py:53(deep_copy)
        1    2.092    2.092    2.092    2.092 {method 'DeepCopy' of 'vtkmodules.vtkCommonDataModel.vtkImageData' objects}
       40    0.000    0.000    1.444    0.036 <__array_function__ internals>:2(copyto)
        4    0.591    0.148    0.591    0.148 {method 'SetVoidArray' of 'vtkmodules.vtkCommonCore.vtkAbstractArray' objects}
        3    0.000    0.000    0.277    0.092 <__array_function__ internals>:2(all)
        3    0.000    0.000    0.277    0.092 .venv\lib\site-packages\numpy\core\fromnumeric.py:2367(all)
        3    0.000    0.000    0.277    0.092 {method 'all' of 'numpy.ndarray' objects}
        3    0.000    0.000    0.277    0.092 .venv\lib\site-packages\numpy\core\_methods.py:60(_all)
     80/4    0.001    0.000    0.219    0.055 <frozen importlib._bootstrap>:986(_find_and_load)
     76/4    0.001    0.000    0.219    0.055 <frozen importlib._bootstrap>:956(_find_and_load_unlocked)
     73/2    0.001    0.000    0.214    0.107 <frozen importlib._bootstrap>:650(_load_unlocked)
     66/2    0.000    0.000    0.214    0.107 <frozen importlib._bootstrap_external>:842(exec_module)
    78/11    0.027    0.000    0.213    0.019 {built-in method builtins.exec}
    104/2    0.000    0.000    0.213    0.106 <frozen importlib._bootstrap>:211(_call_with_frames_removed)
        2    0.000    0.000    0.193    0.096 .venv\lib\site-packages\pyvista\plotting\plotting.py:43(_has_matplotlib)
        1    0.001    0.001    0.190    0.190 .venv\lib\site-packages\matplotlib\__init__.py:1(<module>)
   104/27    0.000    0.000    0.146    0.005 <frozen importlib._bootstrap>:1017(_handle_fromlist)
     32/9    0.000    0.000    0.145    0.016 {built-in method builtins.__import__}
        1    0.001    0.001    0.119    0.119 .venv\lib\site-packages\matplotlib\rcsetup.py:1(<module>)
        4    0.113    0.028    0.113    0.028 {method 'SetNumberOfTuples' of 'vtkmodules.vtkCommonCore.vtkAbstractArray' objects}
        1    0.037    0.037    0.038    0.038 .venv\lib\site-packages\pyvista\plotting\mapper.py:4(make_mapper)
        1    0.000    0.000    0.037    0.037 .venv\lib\site-packages\matplotlib\animation.py:19(<module>)
        1    0.000    0.000    0.037    0.037 .venv\lib\site-packages\matplotlib\fontconfig_pattern.py:1(<module>)
        2    0.005    0.002    0.036    0.018 .venv\lib\site-packages\matplotlib\__init__.py:709(_rc_params_in_file)
       76    0.001    0.000    0.035    0.000 <frozen importlib._bootstrap>:890(_find_spec)
       66    0.002    0.000    0.034    0.001 <frozen importlib._bootstrap_external>:914(get_code)
       75    0.000    0.000    0.033    0.000 <frozen importlib._bootstrap_external>:1399(find_spec)
       75    0.001    0.000    0.033    0.000 <frozen importlib._bootstrap_external>:1367(_get_spec)
      612    0.002    0.000    0.033    0.000 .venv\lib\site-packages\matplotlib\__init__.py:574(__setitem__)
        1    0.000    0.000    0.031    0.031 .venv\lib\site-packages\matplotlib\colors.py:1(<module>)
      153    0.004    0.000    0.030    0.000 <frozen importlib._bootstrap_external>:1498(find_spec)
  381/346    0.012    0.000    0.029    0.000 {built-in method builtins.__build_class__}
        1    0.001    0.001    0.028    0.028 .venv\lib\site-packages\pyparsing.py:27(<module>)
        1    0.000    0.000    0.027    0.027 .venv\lib\site-packages\pyvista\plotting\render_window_interactor.py:627(process_events)
        1    0.027    0.027    0.027    0.027 {method 'ProcessEvents' of 'vtkmodules.vtkRenderingUI.vtkWin32RenderWindowInteractor' objects}
        1    0.000    0.000    0.026    0.026 .venv\lib\site-packages\pyvista\plotting\colors.py:397(get_cmap_safe)
        1    0.000    0.000    0.024    0.024 .venv\lib\site-packages\PIL\Image.py:27(<module>)
        1    0.000    0.000    0.022    0.022 .venv\lib\site-packages\matplotlib\cm.py:1(<module>)
      355    0.022    0.000    0.022    0.000 {built-in method nt.stat}
        2    0.000    0.000    0.021    0.011 .venv\lib\site-packages\matplotlib\rcsetup.py:164(_validate_date_converter)
      324    0.000    0.000    0.020    0.000 <frozen importlib._bootstrap_external>:135(_path_stat)
        1    0.000    0.000    0.020    0.020 .venv\lib\site-packages\matplotlib\dates.py:1(<module>)
       73    0.000    0.000    0.014    0.000 <frozen importlib._bootstrap>:549(module_from_spec)
       66    0.002    0.000    0.014    0.000 <frozen importlib._bootstrap_external>:1034(get_data)
        1    0.000    0.000    0.014    0.014 .venv\lib\site-packages\matplotlib\scale.py:1(<module>)
        1    0.000    0.000    0.013    0.013 .venv\lib\site-packages\matplotlib\cm.py:32(_gen_cmap_registry)
        1    0.000    0.000    0.012    0.012 .venv\lib\site-packages\dateutil\parser\__init__.py:2(<module>)
      259    0.000    0.000    0.012    0.000 C:\Program Files\Python38\lib\re.py:289(_compile)
       66    0.000    0.000    0.012    0.000 <frozen importlib._bootstrap_external>:638(_compile_bytecode)
       66    0.011    0.000    0.011    0.000 {built-in method marshal.loads}
       26    0.000    0.000    0.011    0.000 C:\Program Files\Python38\lib\sre_compile.py:759(compile)
        1    0.000    0.000    0.011    0.011 .venv\lib\site-packages\pyparsing.py:6398(pyparsing_common)
        1    0.000    0.000    0.010    0.010 .venv\lib\site-packages\matplotlib\ticker.py:1(<module>)
        1    0.000    0.000    0.010    0.010 .venv\lib\site-packages\PIL\PngImagePlugin.py:34(<module>)
        5    0.000    0.000    0.010    0.002 <frozen importlib._bootstrap_external>:1164(create_module)
        5    0.010    0.002    0.010    0.002 {built-in method _imp.create_dynamic}
       48    0.000    0.000    0.010    0.000 C:\Program Files\Python38\lib\re.py:250(compile)
        1    0.000    0.000    0.009    0.009 .venv\lib\site-packages\matplotlib\__init__.py:138(_check_versions)
       32    0.001    0.000    0.009    0.000 .venv\lib\site-packages\matplotlib\colors.py:915(from_list)
       66    0.009    0.000    0.009    0.000 {built-in method io.open_code}
        1    0.000    0.000    0.009    0.009 .venv\lib\site-packages\dateutil\parser\_parser.py:2(<module>)
      754    0.006    0.000    0.008    0.000 <frozen importlib._bootstrap_external>:91(_path_join)
        6    0.000    0.000    0.008    0.001 C:\Program Files\Python38\lib\importlib\__init__.py:109(imp

2021 年 9 月 14 日更新 #2:

有趣的是,当尝试打印出数据形状以进行调试时,如下所示:

    data_flattened = data.flatten(order="F")

    volume.point_data["Values"] = data_flattened
    volume.set_active_scalars("Values")

    print(f"Points Shape: {volume.points.shape}")
    print(f"Data Shape: {data.shape}")
    print(f"Flattened Data Shape: {data_flattened.shape}")

我收到以下错误:

错误:

numpy.core._exceptions.MemoryError: Unable to allocate 81.9 GiB for an array with shape (3662502344, 3) and data type float64

输出:

Traceback (most recent call last):
  File "C:\Program Files\Python38\lib\runpy.py", line 194, in _run_module_as_main
    return _run_code(code, main_globals, None,
  File "C:\Program Files\Python38\lib\runpy.py", line 87, in _run_code
    exec(code, run_globals)
  File "c:\Users\user\.vscode\extensions\ms-python.python-2021.9.1191016588\pythonFiles\lib\python\debugpy\__main__.py", line 45, in <module>
    cli.main()
  File "c:\Users\user\.vscode\extensions\ms-python.python-2021.9.1191016588\pythonFiles\lib\python\debugpy/..\debugpy\server\cli.py", line 444, in main    
    run()
  File "c:\Users\user\.vscode\extensions\ms-python.python-2021.9.1191016588\pythonFiles\lib\python\debugpy/..\debugpy\server\cli.py", line 285, in run_file
    runpy.run_path(target_as_str, run_name=compat.force_str("__main__"))
  File "C:\Program Files\Python38\lib\runpy.py", line 265, in run_path
    return _run_module_code(code, init_globals, run_name,
  File "C:\Program Files\Python38\lib\runpy.py", line 97, in _run_module_code
    _run_code(code, mod_globals, init_globals,
  File "C:\Program Files\Python38\lib\runpy.py", line 87, in _run_code
    exec(code, run_globals)
  File "c:\Users\user\Code\gui\gui\main.py", line 81, in <module>
    plot_volume(folder)
  File "c:\Users\user\Code\gui\gui\main.py", line 22, in inner
    retval = fnc(*args, **kwargs)
  File "c:\Users\user\Code\gui\gui\main.py", line 65, in plot_volume
    print(f"Points Shape: {volume.points.shape}")
  File "c:\Users\user\Code\gui\.venv\lib\site-packages\pyvista\core\grid.py", line 368, in points
    return np.c_[xx.ravel(order='F'), yy.ravel(order='F'), zz.ravel(order='F')]
  File "c:\Users\user\Code\gui\.venv\lib\site-packages\numpy\lib\index_tricks.py", line 413, in __getitem__
    res = self.concatenate(tuple(objs), axis=axis)
  File "<__array_function__ internals>", line 5, in concatenate
numpy.core._exceptions.MemoryError: Unable to allocate 81.9 GiB for an array with shape (3662502344, 3) and data type float64

pyvista版本0.32.1中,pyvista/plotting/plotting.py函数add_volume中的代码行有问题:

scalars = scalars.astype(np.float_)
with np.errstate(invalid='ignore'):
    idxs0 = scalars < clim[0]
    idxs1 = scalars > clim[1]
scalars[idxs0] = clim[0]
scalars[idxs1] = clim[1]
scalars = ((scalars - np.nanmin(scalars)) / (np.nanmax(scalars) - np.nanmin(scalars))) * 255
# scalars = scalars.astype(np.uint8)
volume[title] = scalars

对于大型数据集,比如我的

Shape: (1172, 2402, 1301)
dtype: 16-bit int (2 bytes)

Total Size = 1172 * 2402 * 1301 * 2 = 7.325 GB

scalars = scalars.astype(np.float_)

通过将数据转换为浮点数使内存需求翻两番

Shape: (1172, 2402, 1301)
dtype: 16-bit int (8 bytes)

Total Size = 1172 * 2402 * 1301 * 8 = 58.6 GB!

此外,这些行

scalars[idxs0] = clim[0]
scalars[idxs1] = clim[1]

将内存资源激增到 100 GB 以上!

最后,SimpleITK 太慢了。 pyvista.read() 本身不支持读取图像堆栈文件夹,但这可以通过以下方法克服:

from vtkmodules.vtkIOImage import vtkDICOMImageReader

reader = vtkDICOMImageReader()
reader.SetDirectoryName(folder)
reader.Update()

volume = pv.wrap(reader.GetOutputDataObject(0))

立即将其转换为 UniformGrid 并且速度更快。此外,将间距设置为 (1, 1, 1) 以外的任何值都会导致输出出现乱码,因此我删除了间距设置。 (在撰写本文时,这对我来说没有意义,因为我的实际维度间距不是 (1, 1, 1),但我不会反对它)。

裁剪和重新缩放标量数据的快速且内存高效的方法如下:

def load_data(folder):
    reader = vtkDICOMImageReader()
    reader.SetDirectoryName(folder)
    reader.Update()

    volume = pv.wrap(reader.GetOutputDataObject(0))

    del reader  # Why keep double memory?

    clim_16bit = [10000, 20000]  # 16-bit values; change to what you want to see

    scalars = volume["DICOMImage"]
    scalars.clip(clim_16bit[0], clim_16bit[1], out=scalars)

    min_ = np.nanmin(scalars)
    max_ = np.nanmax(scalars)

    np.true_divide((scalars - min_), (max_ - min_) / 255, out=scalars, casting="unsafe")

    volume["DICOMImage"] = np.array(scalars, dtype=np.uint8)

    volume.spacing = (1, 1, 1)  # Be sure to set; Otherwise, the DICOM stack spacing will be used and results will be garbled

    return volume

add_volume() 之前的裁剪和重新缩放要快得多。我已经像这样修改了 add_volume(),让用户可以选择他们是否想要 add_volume() 裁剪和重新缩放标量,以及他们是否想要将单元格数据转换为点数据(这是一个昂贵的内存副本):

def add_volume(
    self,
    volume,
    scalars=None,
    clim=None,
    resolution=None,
    opacity="linear",
    n_colors=256,
    cmap=None,
    flip_scalars=False,
    reset_camera=None,
    name=None,
    ambient=0.0,
    categories=False,
    culling=False,
    multi_colors=False,
    blending="composite",
    mapper=None,
    scalar_bar_args=None,
    show_scalar_bar=None,
    annotations=None,
    pickable=True,
    preference="point",
    opacity_unit_distance=None,
    shade=False,
    diffuse=0.7,
    specular=0.2,
    specular_power=10.0,
    render=True,
    rescale_scalars=True,
    copy_cell_to_point_data=True,
    **kwargs,
):
    """Add a volume, rendered using a smart mapper by default.
    Requires a 3D :class:`numpy.ndarray` or :class:`pyvista.UniformGrid`.
    Parameters
    ----------
    volume : 3D numpy.ndarray or pyvista.UniformGrid
        The input volume to visualize. 3D numpy arrays are accepted.
    scalars : str or numpy.ndarray, optional
        Scalars used to "color" the mesh.  Accepts a string name of an
        array that is present on the mesh or an array equal
        to the number of cells or the number of points in the
        mesh.  Array should be sized as a single vector. If ``scalars`` is
        ``None``, then the active scalars are used.
    clim : 2 item list, optional
        Color bar range for scalars.  Defaults to minimum and
        maximum of scalars array.  Example: ``[-1, 2]``. ``rng``
        is also an accepted alias for this.
    resolution : list, optional
        Block resolution.
    opacity : str or numpy.ndarray, optional
        Opacity mapping for the scalars array.
        A string can also be specified to map the scalars range to a
        predefined opacity transfer function (options include: 'linear',
        'linear_r', 'geom', 'geom_r'). Or you can pass a custom made
        transfer function that is an array either ``n_colors`` in length or
        shorter.
    n_colors : int, optional
        Number of colors to use when displaying scalars. Defaults to 256.
        The scalar bar will also have this many colors.
    cmap : str, optional
        Name of the Matplotlib colormap to us when mapping the ``scalars``.
        See available Matplotlib colormaps.  Only applicable for when
        displaying ``scalars``. Requires Matplotlib to be installed.
        ``colormap`` is also an accepted alias for this. If ``colorcet`` or
        ``cmocean`` are installed, their colormaps can be specified by name.
    flip_scalars : bool, optional
        Flip direction of cmap. Most colormaps allow ``*_r`` suffix to do
        this as well.
    reset_camera : bool, optional
        Reset the camera after adding this mesh to the scene.
    name : str, optional
        The name for the added actor so that it can be easily
        updated.  If an actor of this name already exists in the
        rendering window, it will be replaced by the new actor.
    ambient : float, optional
        When lighting is enabled, this is the amount of light from
        0 to 1 that reaches the actor when not directed at the
        light source emitted from the viewer.  Default 0.0.
    categories : bool, optional
        If set to ``True``, then the number of unique values in the scalar
        array will be used as the ``n_colors`` argument.
    culling : str, optional
        Does not render faces that are culled. Options are ``'front'`` or
        ``'back'``. This can be helpful for dense surface meshes,
        especially when edges are visible, but can cause flat
        meshes to be partially displayed.  Defaults ``False``.
    multi_colors : bool, optional
        Whether or not to use multiple colors when plotting MultiBlock
        object. Blocks will be colored sequentially as 'Reds', 'Greens',
        'Blues', and 'Grays'.
    blending : str, optional
        Blending mode for visualisation of the input object(s). Can be
        one of 'additive', 'maximum', 'minimum', 'composite', or
        'average'. Defaults to 'additive'.
    mapper : str, optional
        Volume mapper to use given by name. Options include:
        ``'fixed_point'``, ``'gpu'``, ``'open_gl'``, and
        ``'smart'``.  If ``None`` the ``"volume_mapper"`` in the
        ``self._theme`` is used.
    scalar_bar_args : dict, optional
        Dictionary of keyword arguments to pass when adding the
        scalar bar to the scene. For options, see
        :func:`pyvista.BasePlotter.add_scalar_bar`.
    show_scalar_bar : bool
        If ``False``, a scalar bar will not be added to the
        scene. Defaults to ``True``.
    annotations : dict, optional
        Pass a dictionary of annotations. Keys are the float
        values in the scalars range to annotate on the scalar bar
        and the values are the the string annotations.
    pickable : bool, optional
        Set whether this mesh is pickable.
    preference : str, optional
        When ``mesh.n_points == mesh.n_cells`` and setting
        scalars, this parameter sets how the scalars will be
        mapped to the mesh.  Default ``'points'``, causes the
        scalars will be associated with the mesh points.  Can be
        either ``'points'`` or ``'cells'``.
    opacity_unit_distance : float
        Set/Get the unit distance on which the scalar opacity
        transfer function is defined. Meaning that over that
        distance, a given opacity (from the transfer function) is
        accumulated. This is adjusted for the actual sampling
        distance during rendering. By default, this is the length
        of the diagonal of the bounding box of the volume divided
        by the dimensions.
    shade : bool
        Default off. If shading is turned on, the mapper may
        perform shading calculations - in some cases shading does
        not apply (for example, in a maximum intensity projection)
        and therefore shading will not be performed even if this
        flag is on.
    diffuse : float, optional
        The diffuse lighting coefficient. Default ``1.0``.
    specular : float, optional
        The specular lighting coefficient. Default ``0.0``.
    specular_power : float, optional
        The specular power. Between ``0.0`` and ``128.0``.
    render : bool, optional
        Force a render when True.  Default ``True``.
    rescale_scalars : bool, optional
        Rescale scalar data. This is an expensive memory and time
        operation, especially for large data. In that case, it is
        best to set this to ``False``, clip and scale scalar data
        of ``volume`` beforehand, and pass that to ``add_volume``.
        Default ``True``.
    copy_cell_to_point_data : bool, optional
        Make a copy of the original ``volume``, passing cell data
        to point data. This is an expensive memory and time
        operation, especially for large data. In that case, it is
        best to choose ``False``. However, this copy is a current
        workaround to ensure original object data is not altered
        and volume rendering on cells exhibits some issues. Use
        with caution. Default ``True``.
    **kwargs : dict, optional
        Optional keyword arguments.
    Returns
    -------
    vtk.vtkActor
        VTK actor of the volume.
    """
    # Handle default arguments

    # Supported aliases
    clim = kwargs.pop("rng", clim)
    cmap = kwargs.pop("colormap", cmap)
    culling = kwargs.pop("backface_culling", culling)

    if "scalar" in kwargs:
        raise TypeError(
            "`scalar` is an invalid keyword argument for `add_mesh`. Perhaps you mean `scalars` with an s?"
        )
    assert_empty_kwargs(**kwargs)

    # Avoid mutating input
    if scalar_bar_args is None:
        scalar_bar_args = {}
    else:
        scalar_bar_args = scalar_bar_args.copy()
    # account for legacy behavior
    if "stitle" in kwargs:  # pragma: no cover
        warnings.warn(USE_SCALAR_BAR_ARGS, PyvistaDeprecationWarning)
        scalar_bar_args.setdefault("title", kwargs.pop("stitle"))

    if show_scalar_bar is None:
        show_scalar_bar = self._theme.show_scalar_bar

    if culling is True:
        culling = "backface"

    if mapper is None:
        mapper = self._theme.volume_mapper

    # only render when the plotter has already been shown
    if render is None:
        render = not self._first_time

    # Convert the VTK data object to a pyvista wrapped object if necessary
    if not is_pyvista_dataset(volume):
        if isinstance(volume, np.ndarray):
            volume = wrap(volume)
            if resolution is None:
                resolution = [1, 1, 1]
            elif len(resolution) != 3:
                raise ValueError("Invalid resolution dimensions.")
            volume.spacing = resolution
        else:
            volume = wrap(volume)
            if not is_pyvista_dataset(volume):
                raise TypeError(
                    f"Object type ({type(volume)}) not supported for plotting in PyVista."
                )
    else:
        if copy_cell_to_point_data:
            # HACK: Make a copy so the original object is not altered.
            #       Also, place all data on the nodes as issues arise when
            #       volume rendering on the cells.
            volume = volume.cell_data_to_point_data()

    if name is None:
        name = f"{type(volume).__name__}({volume.memory_address})"

    if isinstance(volume, pyvista.MultiBlock):
        from itertools import cycle

        cycler = cycle(["Reds", "Greens", "Blues", "Greys", "Oranges", "Purples"])
        # Now iteratively plot each element of the multiblock dataset
        actors = []
        for idx in range(volume.GetNumberOfBlocks()):
            if volume[idx] is None:
                continue
            # Get a good name to use
            next_name = f"{name}-{idx}"
            # Get the data object
            block = wrap(volume.GetBlock(idx))
            if resolution is None:
                try:
                    block_resolution = block.GetSpacing()
                except AttributeError:
                    block_resolution = resolution
            else:
                block_resolution = resolution
            if multi_colors:
                color = next(cycler)
            else:
                color = cmap

            a = self.add_volume(
                block,
                resolution=block_resolution,
                opacity=opacity,
                n_colors=n_colors,
                cmap=color,
                flip_scalars=flip_scalars,
                reset_camera=reset_camera,
                name=next_name,
                ambient=ambient,
                categories=categories,
                culling=culling,
                clim=clim,
                mapper=mapper,
                pickable=pickable,
                opacity_unit_distance=opacity_unit_distance,
                shade=shade,
                diffuse=diffuse,
                specular=specular,
                specular_power=specular_power,
                render=render,
            )

            actors.append(a)
        return actors

    if not isinstance(volume, pyvista.UniformGrid):
        raise TypeError(
            f"Type {type(volume)} not supported for volume rendering at this time. Use `pyvista.UniformGrid`."
        )

    if opacity_unit_distance is None:
        opacity_unit_distance = volume.length / (np.mean(volume.dimensions) - 1)

    if scalars is None:
        # Make sure scalars components are not vectors/tuples
        scalars = volume.active_scalars
        # Don't allow plotting of string arrays by default
        if scalars is not None and np.issubdtype(scalars.dtype, np.number):
            scalar_bar_args.setdefault("title", volume.active_scalars_info[1])
        else:
            raise ValueError("No scalars to use for volume rendering.")
    # NOTE: AGH, 16-SEP-2021; Remove this as it is unnecessary
    # elif isinstance(scalars, str):
    #     pass

    # NOTE: AGH, 16-SEP-2021; Why this comment block
    ##############

    title = "Data"
    if isinstance(scalars, str):
        title = scalars
        scalars = get_array(volume, scalars, preference=preference, err=True)
        scalar_bar_args.setdefault("title", title)

    if not isinstance(scalars, np.ndarray):
        scalars = np.asarray(scalars)

    if not np.issubdtype(scalars.dtype, np.number):
        raise TypeError(
            "Non-numeric scalars are currently not supported for volume rendering."
        )

    if scalars.ndim != 1:
        scalars = scalars.ravel()

    # NOTE: AGH, 16-SEP-2021; An expensive unnecessary memory copy. Remove this.
    # if scalars.dtype == np.bool_ or scalars.dtype == np.uint8:
    #     scalars = scalars.astype(np.float_)

    # Define mapper, volume, and add the correct properties
    mappers = {
        "fixed_point": _vtk.vtkFixedPointVolumeRayCastMapper,
        "gpu": _vtk.vtkGPUVolumeRayCastMapper,
        "open_gl": _vtk.vtkOpenGLGPUVolumeRayCastMapper,
        "smart": _vtk.vtkSmartVolumeMapper,
    }
    if not isinstance(mapper, str) or mapper not in mappers.keys():
        raise TypeError(
            f"Mapper ({mapper}) unknown. Available volume mappers include: {', '.join(mappers.keys())}"
        )
    self.mapper = make_mapper(mappers[mapper])

    # Scalars interpolation approach
    if scalars.shape[0] == volume.n_points:
        # NOTE: AGH, 16-SEP-2021; Why the extra copy?
        # volume.point_data.set_array(scalars, title, True)
        self.mapper.SetScalarModeToUsePointData()
    elif scalars.shape[0] == volume.n_cells:
        # NOTE: AGH, 16-SEP-2021; Why the extra copy?
        # volume.cell_data.set_array(scalars, title, True)
        self.mapper.SetScalarModeToUseCellData()
    else:
        raise_not_matching(scalars, volume)

    # Set scalars range
    if clim is None:
        clim = [np.nanmin(scalars), np.nanmax(scalars)]
    elif isinstance(clim, float) or isinstance(clim, int):
        clim = [-clim, clim]

    # NOTE: AGH, 16-SEP-2021; Why this comment block
    ###############

    # NOTE: AGH, 16-SEP-2021; Expensive and inneffecient code. Replace with below
    # scalars = scalars.astype(np.float_)
    # with np.errstate(invalid="ignore"):
    #     idxs0 = scalars < clim[0]
    #     idxs1 = scalars > clim[1]
    # scalars[idxs0] = clim[0]
    # scalars[idxs1] = clim[1]
    # scalars = (
    #     (scalars - np.nanmin(scalars)) / (np.nanmax(scalars) - np.nanmin(scalars))
    # ) * 255
    # # scalars = scalars.astype(np.uint8)
    # volume[title] = scalars
    
    if rescale_scalars:
        clim = np.asarray(clim, dtype=scalars.dtype)
        
        scalars.clip(clim[0], clim[1], out=scalars)

        min_ = np.nanmin(scalars)
        max_ = np.nanmax(scalars)

        np.true_divide((scalars - min_), (max_ - min_) / 255, out=scalars, casting="unsafe")

        volume[title] = np.array(scalars, dtype=np.uint8)

        self.mapper.scalar_range = clim

    # Set colormap and build lookup table
    table = _vtk.vtkLookupTable()
    # table.SetNanColor(nan_color) # NaN's are chopped out with current implementation
    # above/below colors not supported with volume rendering

    if isinstance(annotations, dict):
        for val, anno in annotations.items():
            table.SetAnnotation(float(val), str(anno))

    if cmap is None:  # Set default map if matplotlib is available
        if _has_matplotlib():
            cmap = self._theme.cmap

    if cmap is not None:
        if not _has_matplotlib():
            raise ImportError("Please install matplotlib for volume rendering.")

        cmap = get_cmap_safe(cmap)
        if categories:
            if categories is True:
                n_colors = len(np.unique(scalars))
            elif isinstance(categories, int):
                n_colors = categories
    if flip_scalars:
        cmap = cmap.reversed()

    color_tf = _vtk.vtkColorTransferFunction()
    for ii in range(n_colors):
        color_tf.AddRGBPoint(ii, *cmap(ii)[:-1])

    # Set opacities
    if isinstance(opacity, (float, int)):
        opacity_values = [opacity] * n_colors
    elif isinstance(opacity, str):
        opacity_values = pyvista.opacity_transfer_function(opacity, n_colors)
    elif isinstance(opacity, (np.ndarray, list, tuple)):
        opacity = np.array(opacity)
        opacity_values = opacity_transfer_function(opacity, n_colors)

    opacity_tf = _vtk.vtkPiecewiseFunction()
    for ii in range(n_colors):
        opacity_tf.AddPoint(ii, opacity_values[ii] / n_colors)

    # Now put color tf and opacity tf into a lookup table for the scalar bar
    table.SetNumberOfTableValues(n_colors)
    lut = cmap(np.array(range(n_colors))) * 255
    lut[:, 3] = opacity_values
    lut = lut.astype(np.uint8)
    table.SetTable(_vtk.numpy_to_vtk(lut))
    table.SetRange(*clim)
    self.mapper.lookup_table = table

    self.mapper.SetInputData(volume)

    blending = blending.lower()
    if blending in ["additive", "add", "sum"]:
        self.mapper.SetBlendModeToAdditive()
    elif blending in ["average", "avg", "average_intensity"]:
        self.mapper.SetBlendModeToAverageIntensity()
    elif blending in ["composite", "comp"]:
        self.mapper.SetBlendModeToComposite()
    elif blending in ["maximum", "max", "maximum_intensity"]:
        self.mapper.SetBlendModeToMaximumIntensity()
    elif blending in ["minimum", "min", "minimum_intensity"]:
        self.mapper.SetBlendModeToMinimumIntensity()
    else:
        raise ValueError(
            f"Blending mode '{blending}' invalid. "
            + "Please choose one "
            + "of 'additive', "
            "'composite', 'minimum' or " + "'maximum'."
        )
    self.mapper.Update()

    self.volume = _vtk.vtkVolume()
    self.volume.SetMapper(self.mapper)

    prop = _vtk.vtkVolumeProperty()
    prop.SetColor(color_tf)
    prop.SetScalarOpacity(opacity_tf)
    prop.SetAmbient(ambient)
    prop.SetScalarOpacityUnitDistance(opacity_unit_distance)
    prop.SetShade(shade)
    prop.SetDiffuse(diffuse)
    prop.SetSpecular(specular)
    prop.SetSpecularPower(specular_power)
    self.volume.SetProperty(prop)

    actor, prop = self.add_actor(
        self.volume,
        reset_camera=reset_camera,
        name=name,
        culling=culling,
        pickable=pickable,
        render=render,
    )

    # Add scalar bar if scalars are available
    if show_scalar_bar and scalars is not None:
        self.add_scalar_bar(**scalar_bar_args)

    self.renderer.Modified()

    return actor

最终示例代码如下:

import numpy as np
import pyvista as pv
from vtkmodules.vtkIOImage import vtkDICOMImageReader

pv.rcParams["volume_mapper"] = "fixed_point"  # Windows
folder = r"C:\path\to\DICOM\folder"

def load_data(folder):
    reader = vtkDICOMImageReader()
    reader.SetDirectoryName(folder)
    reader.Update()

    volume = pv.wrap(reader.GetOutputDataObject(0))

    del reader  # Why keep double memory?

    clim_16bit = [10000, 20000]  # 16-bit values; Change to what you want to see
    clim_8bit = [int(clim_16bit[0] // 256), int(clim_16bit[1] // 256)]  # Scaled 8-bit values; Here for example only

    scalars = volume["DICOMImage"]
    scalars.clip(clim_16bit[0], clim_16bit[1], out=scalars)

    min_ = np.nanmin(scalars)
    max_ = np.nanmax(scalars)

    np.true_divide((scalars - min_), (max_ - min_) / 255, out=scalars, casting="unsafe")

    volume["DICOMImage"] = np.array(scalars, dtype=np.uint8)

    volume.spacing = (1, 1, 1)  # Be sure to set; Otherwise, the DICOM stack spacing will be used and results will be garbled

    return volume

if __name__ == "__main__":
    print("Load Data Profile")
    print("=================")

    volume = load_data(folder)

    print()

    p = pv.Plotter()

    print("Add Volume Profile")
    print("==================")

    p.add_volume(
        volume,
        blending="composite",
        scalars="DICOMImage",
        reset_camera=True,
        rescale_scalars=False,
        copy_cell_to_point_data=False,
    )

    print()

    p.add_axes()

    p.show()