转换数据集以进行多标签文本分类
Transforming a Dataset for Multi-Label Text Classification
我正在通过深度学习模型对多标签分类进行一些实验。
但是我遇到了数据集问题。
我使用 Keras,TensorFlow 2.0, numpy,pandas.
我有以下形式的数据集:
Dataset in the form that I have it
要应用多标签分类(6 个标签),我需要我的数据集采用以下形式:
Dataset in the form that I need it
如何实现这一点?是否有任何函数可以使这种转换更容易?
尝试:
comments_df[['abusive','hateful','offensive','disrespectful','fearful','normal']] = comments_df['sentiment'].str.split('_', -1, expand=True)
这给了我一个错误:
ValueError: Columns must be same length as key
关于我将使用的 DL 模型,它是 bi-LSTM,但它与问题本身没有任何关系。
试试这个:
df = pd.get_dummies(data = df, columns = ['sentiment'])
我发现这个可行(不是最佳解决方案):
"""
Creating a column for each of the target labels with sentiment's column data.
"""
def split_sentiment_outputs(output_label, sentiment_col="sentiment"):
comments_df[output_label] = comments_df[sentiment_col].str.split('_')
"""
Transform column's data to categorical.
"""
def transform_data_for_multilabel(output_label):
row = comments_df[output_label]
for index, row in row.items():
# print("Index:", index)
# print("length:", len(row))
# print("content:", row)
# print("--------------")
z = 0
while z < len(row):
if row[z] == output_label:
comments_df.at[index, output_label] = 1
break
else:
comments_df.at[index, output_label] = 0
z = z + 1
# Applying Data Transformation
output_labels = ["abusive", "hateful", "offensive", "disrespectful", "fearful", "normal"]
for i in range(MAX_OUT):
split_sentiment_outputs(output_labels[i])
for i in range(MAX_OUT):
transform_data_for_multilabel(output_labels[i])
我正在通过深度学习模型对多标签分类进行一些实验。 但是我遇到了数据集问题。
我使用 Keras,TensorFlow 2.0, numpy,pandas.
我有以下形式的数据集: Dataset in the form that I have it
要应用多标签分类(6 个标签),我需要我的数据集采用以下形式: Dataset in the form that I need it
如何实现这一点?是否有任何函数可以使这种转换更容易?
尝试:
comments_df[['abusive','hateful','offensive','disrespectful','fearful','normal']] = comments_df['sentiment'].str.split('_', -1, expand=True)
这给了我一个错误:
ValueError: Columns must be same length as key
关于我将使用的 DL 模型,它是 bi-LSTM,但它与问题本身没有任何关系。
试试这个:
df = pd.get_dummies(data = df, columns = ['sentiment'])
我发现这个可行(不是最佳解决方案):
"""
Creating a column for each of the target labels with sentiment's column data.
"""
def split_sentiment_outputs(output_label, sentiment_col="sentiment"):
comments_df[output_label] = comments_df[sentiment_col].str.split('_')
"""
Transform column's data to categorical.
"""
def transform_data_for_multilabel(output_label):
row = comments_df[output_label]
for index, row in row.items():
# print("Index:", index)
# print("length:", len(row))
# print("content:", row)
# print("--------------")
z = 0
while z < len(row):
if row[z] == output_label:
comments_df.at[index, output_label] = 1
break
else:
comments_df.at[index, output_label] = 0
z = z + 1
# Applying Data Transformation
output_labels = ["abusive", "hateful", "offensive", "disrespectful", "fearful", "normal"]
for i in range(MAX_OUT):
split_sentiment_outputs(output_labels[i])
for i in range(MAX_OUT):
transform_data_for_multilabel(output_labels[i])