Keras ValueError: Dimensions must be equal, but are 2 and 32 for '{{node Equal}} with input shapes: [?,2], [?,32,32]
Keras ValueError: Dimensions must be equal, but are 2 and 32 for '{{node Equal}} with input shapes: [?,2], [?,32,32]
当我遇到以下错误时,我正在尝试训练一个简单的 Keras 网络进行分类。我知道我的输入有问题,但我不知道如何修复它。这是我的代码
我的数据集形状:
x_train : float32 0.0 1.0 (2444, 64, 64, 1)
y_train : float32 0.0 1.0 (2444, 2)
x_test : float32 0.0 1.0 (9123, 64, 64, 1)
y_test : float32 0.0 1.0 (9123, 2)
模特:
inputs = keras.Input(shape=(64,64,1), dtype='float32')
x = keras.layers.Conv2D(12,(9,9), padding="same",input_shape=(64,64,1), dtype='float32',activation='relu')(inputs)
x = keras.layers.Conv2D(18,(7,7), padding="same", activation='relu')(x)
x = keras.layers.MaxPool2D(pool_size=(2,2))(x)
x = keras.layers.Dropout(0.25)(x)
x = keras.layers.Dense(50, activation='relu')(x)
x = keras.layers.Dropout(0.4)(x)
outputs = keras.layers.Dense(2, activation='softmax')(x)
model = keras.Model(inputs, outputs)
模型总结:
Model: "model_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_2 (InputLayer) [(None, 64, 64, 1)] 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 64, 64, 12) 984
_________________________________________________________________
conv2d_3 (Conv2D) (None, 64, 64, 18) 10602
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 32, 32, 18) 0
_________________________________________________________________
dropout_2 (Dropout) (None, 32, 32, 18) 0
_________________________________________________________________
dense_2 (Dense) (None, 32, 32, 50) 950
_________________________________________________________________
dropout_3 (Dropout) (None, 32, 32, 50) 0
_________________________________________________________________
dense_3 (Dense) (None, 32, 32, 2) 102
=================================================================
Total params: 12,638
Trainable params: 12,638
Non-trainable params: 0
________________________
compiler and fitter 想拟合模型时出现的错误
model.compile(
loss=keras.losses.SparseCategoricalCrossentropy(),
optimizer=keras.optimizers.Adam(0.01),
metrics=["acc"],
)
model.fit(x_train, y_train, batch_size=32, epochs = 20, validation_split= 0.3,
callbacks=[tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3)])
最后是错误:
ValueError Traceback (most recent call last)
<ipython-input-31-e4cade46a08c> in <module>()
1 model.fit(x_train, y_train, batch_size=32, epochs = 20, validation_split= 0.3,
----> 2 callbacks=[tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3)])
9 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
992 except Exception as e: # pylint:disable=broad-except
993 if hasattr(e, "ag_error_metadata"):
--> 994 raise e.ag_error_metadata.to_exception(e)
995 else:
996 raise
ValueError: in user code:
/usr/local/lib/python3.7/dist-packages/keras/engine/training.py:853 train_function *
return step_function(self, iterator)
/usr/local/lib/python3.7/dist-packages/keras/engine/training.py:842 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
/usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:1286 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:2849 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:3632 _call_for_each_replica
return fn(*args, **kwargs)
/usr/local/lib/python3.7/dist-packages/keras/engine/training.py:835 run_step **
outputs = model.train_step(data)
/usr/local/lib/python3.7/dist-packages/keras/engine/training.py:792 train_step
self.compiled_metrics.update_state(y, y_pred, sample_weight)
/usr/local/lib/python3.7/dist-packages/keras/engine/compile_utils.py:457 update_state
metric_obj.update_state(y_t, y_p, sample_weight=mask)
/usr/local/lib/python3.7/dist-packages/keras/utils/metrics_utils.py:73 decorated
update_op = update_state_fn(*args, **kwargs)
/usr/local/lib/python3.7/dist-packages/keras/metrics.py:177 update_state_fn
return ag_update_state(*args, **kwargs)
/usr/local/lib/python3.7/dist-packages/keras/metrics.py:681 update_state **
matches = ag_fn(y_true, y_pred, **self._fn_kwargs)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/util/dispatch.py:206 wrapper
return target(*args, **kwargs)
/usr/local/lib/python3.7/dist-packages/keras/metrics.py:3537 sparse_categorical_accuracy
return tf.cast(tf.equal(y_true, y_pred), backend.floatx())
/usr/local/lib/python3.7/dist-packages/tensorflow/python/util/dispatch.py:206 wrapper
return target(*args, **kwargs)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/math_ops.py:1864 equal
return gen_math_ops.equal(x, y, name=name)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/gen_math_ops.py:3219 equal
name=name)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/op_def_library.py:750 _apply_op_helper
attrs=attr_protos, op_def=op_def)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py:601 _create_op_internal
compute_device)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/ops.py:3569 _create_op_internal
op_def=op_def)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/ops.py:2042 __init__
control_input_ops, op_def)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/ops.py:1883 _create_c_op
raise ValueError(str(e))
ValueError: Dimensions must be equal, but are 2 and 32 for '{{node Equal}} = Equal[T=DT_FLOAT, incompatible_shape_error=true](IteratorGetNext:1, Cast_1)' with input shapes: [?,2], [?,32,32].
正如您在模型摘要中看到的,模型的输出形状是 (None,32,32,2)
,而根据目标值它应该是 (None,2)
,尝试添加 Flatten
层在 Dense
层之前:
x = keras.layers.Dropout(0.25)(x)
x = keras.layers.Flatten()(x) # Add this
x = keras.layers.Dense(50, activation='relu')(x)
当我遇到以下错误时,我正在尝试训练一个简单的 Keras 网络进行分类。我知道我的输入有问题,但我不知道如何修复它。这是我的代码
我的数据集形状:
x_train : float32 0.0 1.0 (2444, 64, 64, 1)
y_train : float32 0.0 1.0 (2444, 2)
x_test : float32 0.0 1.0 (9123, 64, 64, 1)
y_test : float32 0.0 1.0 (9123, 2)
模特:
inputs = keras.Input(shape=(64,64,1), dtype='float32')
x = keras.layers.Conv2D(12,(9,9), padding="same",input_shape=(64,64,1), dtype='float32',activation='relu')(inputs)
x = keras.layers.Conv2D(18,(7,7), padding="same", activation='relu')(x)
x = keras.layers.MaxPool2D(pool_size=(2,2))(x)
x = keras.layers.Dropout(0.25)(x)
x = keras.layers.Dense(50, activation='relu')(x)
x = keras.layers.Dropout(0.4)(x)
outputs = keras.layers.Dense(2, activation='softmax')(x)
model = keras.Model(inputs, outputs)
模型总结:
Model: "model_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_2 (InputLayer) [(None, 64, 64, 1)] 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 64, 64, 12) 984
_________________________________________________________________
conv2d_3 (Conv2D) (None, 64, 64, 18) 10602
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 32, 32, 18) 0
_________________________________________________________________
dropout_2 (Dropout) (None, 32, 32, 18) 0
_________________________________________________________________
dense_2 (Dense) (None, 32, 32, 50) 950
_________________________________________________________________
dropout_3 (Dropout) (None, 32, 32, 50) 0
_________________________________________________________________
dense_3 (Dense) (None, 32, 32, 2) 102
=================================================================
Total params: 12,638
Trainable params: 12,638
Non-trainable params: 0
________________________
compiler and fitter 想拟合模型时出现的错误
model.compile(
loss=keras.losses.SparseCategoricalCrossentropy(),
optimizer=keras.optimizers.Adam(0.01),
metrics=["acc"],
)
model.fit(x_train, y_train, batch_size=32, epochs = 20, validation_split= 0.3,
callbacks=[tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3)])
最后是错误:
ValueError Traceback (most recent call last)
<ipython-input-31-e4cade46a08c> in <module>()
1 model.fit(x_train, y_train, batch_size=32, epochs = 20, validation_split= 0.3,
----> 2 callbacks=[tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3)])
9 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
992 except Exception as e: # pylint:disable=broad-except
993 if hasattr(e, "ag_error_metadata"):
--> 994 raise e.ag_error_metadata.to_exception(e)
995 else:
996 raise
ValueError: in user code:
/usr/local/lib/python3.7/dist-packages/keras/engine/training.py:853 train_function *
return step_function(self, iterator)
/usr/local/lib/python3.7/dist-packages/keras/engine/training.py:842 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
/usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:1286 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:2849 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:3632 _call_for_each_replica
return fn(*args, **kwargs)
/usr/local/lib/python3.7/dist-packages/keras/engine/training.py:835 run_step **
outputs = model.train_step(data)
/usr/local/lib/python3.7/dist-packages/keras/engine/training.py:792 train_step
self.compiled_metrics.update_state(y, y_pred, sample_weight)
/usr/local/lib/python3.7/dist-packages/keras/engine/compile_utils.py:457 update_state
metric_obj.update_state(y_t, y_p, sample_weight=mask)
/usr/local/lib/python3.7/dist-packages/keras/utils/metrics_utils.py:73 decorated
update_op = update_state_fn(*args, **kwargs)
/usr/local/lib/python3.7/dist-packages/keras/metrics.py:177 update_state_fn
return ag_update_state(*args, **kwargs)
/usr/local/lib/python3.7/dist-packages/keras/metrics.py:681 update_state **
matches = ag_fn(y_true, y_pred, **self._fn_kwargs)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/util/dispatch.py:206 wrapper
return target(*args, **kwargs)
/usr/local/lib/python3.7/dist-packages/keras/metrics.py:3537 sparse_categorical_accuracy
return tf.cast(tf.equal(y_true, y_pred), backend.floatx())
/usr/local/lib/python3.7/dist-packages/tensorflow/python/util/dispatch.py:206 wrapper
return target(*args, **kwargs)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/math_ops.py:1864 equal
return gen_math_ops.equal(x, y, name=name)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/gen_math_ops.py:3219 equal
name=name)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/op_def_library.py:750 _apply_op_helper
attrs=attr_protos, op_def=op_def)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py:601 _create_op_internal
compute_device)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/ops.py:3569 _create_op_internal
op_def=op_def)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/ops.py:2042 __init__
control_input_ops, op_def)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/ops.py:1883 _create_c_op
raise ValueError(str(e))
ValueError: Dimensions must be equal, but are 2 and 32 for '{{node Equal}} = Equal[T=DT_FLOAT, incompatible_shape_error=true](IteratorGetNext:1, Cast_1)' with input shapes: [?,2], [?,32,32].
正如您在模型摘要中看到的,模型的输出形状是 (None,32,32,2)
,而根据目标值它应该是 (None,2)
,尝试添加 Flatten
层在 Dense
层之前:
x = keras.layers.Dropout(0.25)(x)
x = keras.layers.Flatten()(x) # Add this
x = keras.layers.Dense(50, activation='relu')(x)