使用 lapply 创建 t 检验 table

using lapply to create t-test table

我想在两个人群(在治疗组内或治疗组外(下面的样本数据中分别为 1 或 0))的多个变量之间进行 t 检验,并且对于不同的研究,所有这些都坐着在同一个数据框中。在下面的示例数据中,我想为 1/0 治疗组之间的所有变量(在示例数据中:Age、Dollars、DiseaseCnt)生成 t 检验。我想 运行 这些 t 检验,按程序,而不是整个人群。我有生成 t 测试的逻辑。但是,我需要帮助完成最后一步,即从函数中提取适当的部分并创建一些容易消化的东西table。

最终,我想要的是:table 的 t-stats、p-值、执行 t-test 的变量以及测试变量的程序。

DT<-data.frame(
               Treated=sample(0:1,1000,replace=T)
              ,Program=c('Program A','Program B','Program C','Program D')
              ,Age=as.integer(rnorm(1000,mean=65,sd=15))
              ,Dollars=as.integer(rpois(1000,lambda=1000))
              ,DiseaseCnt=as.integer(rnorm(1000,mean=5,sd=2)) )

progs<-unique(DT$Program) # Pull program names
vars<-names(DT)[3:5] # pull variables to run t tests

test<-lapply(progs, function(i)
          tt<-lapply(vars, function(j) {t.test( DT[DT$Treated==1 & DT$Program == i,names(DT)==j] 
                                                ,DT[DT$Treated==0 & DT$Program == i,names(DT)==j]
                                                ,alternative = 'two.sided'  ) 
              list(j,tt$statistic,tt$p.value)  }
                 ) ) 
  # nested lapply produces results in list format that can be binded, but complete output w/ both lapply's is erroneous

您可以从回归中得到相同的 t 检验;如果您认为不同程序的治疗效果不同,则应包括交互作用。您还可以指定多个响应。

> m <- lm(cbind(Age,Dollars,DiseaseCnt)~Treated * Program - Treated - 1, DT)
> lapply(summary(m), `[[`, "coefficients")
$`Response Age`
                              Estimate  Std. Error       t value         Pr(>|t|)
ProgramProgram A         63.0875912409 1.294086510 48.7506752932 1.355786133e-265
ProgramProgram B         65.3846153846 1.400330869 46.6922616771 1.207761156e-252
ProgramProgram C         66.0695652174 1.412455172 46.7763979425 3.534894216e-253
ProgramProgram D         66.6691729323 1.313402302 50.7606640010 5.038015651e-278
Treated:ProgramProgram A  2.8593114140 1.924837595  1.4854819032  1.377339219e-01
Treated:ProgramProgram B -0.9786003470 1.919883369 -0.5097186438  6.103619649e-01
Treated:ProgramProgram C -0.5066022544 1.922108032 -0.2635659631  7.921691261e-01
Treated:ProgramProgram D -2.8657541289 1.919883369 -1.4926709484  1.358412980e-01

$`Response Dollars`
                                Estimate  Std. Error        t value     Pr(>|t|)
ProgramProgram A          998.5474452555 2.681598120 372.3702808887 0.0000000000
ProgramProgram B          997.4188034188 2.901757030 343.7292623810 0.0000000000
ProgramProgram C         1001.6869565217 2.926880936 342.2370019265 0.0000000000
ProgramProgram D         1001.2180451128 2.721624185 367.8752013053 0.0000000000
Treated:ProgramProgram A   -0.9899231316 3.988636646  -0.2481858388 0.8040419882
Treated:ProgramProgram B    2.5060086113 3.978370529   0.6299082986 0.5288996396
Treated:ProgramProgram C   -5.4721417069 3.982980462  -1.3738811324 0.1697889454
Treated:ProgramProgram D   -4.0043698991 3.978370529  -1.0065351806 0.3144036460

$`Response DiseaseCnt`
                               Estimate   Std. Error        t value         Pr(>|t|)
ProgramProgram A          4.53284671533 0.1793523653 25.27341475576 3.409326912e-109
ProgramProgram B          4.56410256410 0.1940771747 23.51694665775  1.515736580e-97
ProgramProgram C          4.25217391304 0.1957575279 21.72163675698  6.839384262e-86
ProgramProgram D          4.60150375940 0.1820294143 25.27890219412 3.133081901e-109
Treated:ProgramProgram A  0.13087009883 0.2667705543  0.49057175444  6.238378600e-01
Treated:ProgramProgram B -0.02274918064 0.2660839292 -0.08549625944  9.318841210e-01
Treated:ProgramProgram C  0.47375201288 0.2663922537  1.77840010867  7.564438017e-02
Treated:ProgramProgram D -0.31090546880 0.2660839292 -1.16844887901  2.429064705e-01

您特别关心回归 table 的 Treated:Program 个条目。

您应该先将其转换为 data.table。 (在我的代码中我称你原来的 table DF):

DT <- as.data.table(DF)
DT[, t.test(data=.SD, Age ~ Treated), by=Program]
   Program  statistic parameter   p.value   conf.int estimate null.value alternative
1: Program A -0.6286875  247.8390 0.5301326 -4.8110579 65.26667          0   two.sided
2: Program A -0.6286875  247.8390 0.5301326  2.4828527 66.43077          0   two.sided
3: Program B  1.4758524  230.5380 0.1413480 -0.9069634 67.15315          0   two.sided
4: Program B  1.4758524  230.5380 0.1413480  6.3211834 64.44604          0   two.sided
5: Program C  0.1994182  246.9302 0.8420998 -3.3560930 63.56557          0   two.sided
6: Program C  0.1994182  246.9302 0.8420998  4.1122406 63.18750          0   two.sided
7: Program D -1.1321569  246.0086 0.2586708 -6.1855837 62.31707          0   two.sided
8: Program D -1.1321569  246.0086 0.2586708  1.6701237 64.57480          0   two.sided
                method      data.name
1: Welch Two Sample t-test Age by Treated
2: Welch Two Sample t-test Age by Treated
3: Welch Two Sample t-test Age by Treated
4: Welch Two Sample t-test Age by Treated
5: Welch Two Sample t-test Age by Treated
6: Welch Two Sample t-test Age by Treated
7: Welch Two Sample t-test Age by Treated
8: Welch Two Sample t-test Age by Treated

在这种格式中,对于每个Programstatistic 是相同的,等于t,这里的parameterdf,对于 conf.int,它(按顺序)先低后高(因此对于 Program A,置信区间是 (-4.8110579, 2.4828527),对于 estimate,它将是 group 0 然后是 group 1(所以对于 Program ATreated == 0 的平均值是 65.26667,等等

这是我能想到的最快的解决方案,您可以遍历 vars,或者也许有更简单的方法。


编辑:我只确认 Program AAge,使用以下代码:

DT[Program == 'Program A', t.test(Age ~ Treated)]
    Welch Two Sample t-test

data:  Age by Treated
t = -0.62869, df = 247.84, p-value = 0.5301
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -4.811058  2.482853
sample estimates:
mean in group 0 mean in group 1
       65.26667        66.43077

编辑 2:这是循环遍历您的变量并将它们 rbind 组合在一起的代码:

do.call(rbind, lapply(vars, function(x) DT[, t.test(data=.SD, eval(parse(text=x)) ~ Treated), by=Program]))

您遇到错误是因为您试图从创建的函数中访问tt$statistictt。一些包围问题。

这是按照您的版本执行此操作的一种方法

results <- lapply(progs, function (i) {
  DS = subset(DT, Program == i)
  o <- lapply(vars, function (i) {
    frm <- formula(paste0(i, '~ Treated'))
    tt <- t.test(frm, DS)
    data.frame(Variable=i, T=tt$statistic, P=tt$p.value)
  })
  o <- do.call(rbind, o)
  o$Program <- i
  o
})
do.call(rbind, results)

或者您可以使用(例如)ddply rbind-ing 来完成(我认为 rbinding 仍然发生,只是在幕后):

library(plyr)
combinations <- expand.grid(Program=progs, Y=vars)
ddply(combinations, .(Program, Y),
      function (x) {
          # x is a dataframe with the program and variable;
          #  just do the t-test and add the statistic & p-val to it
          frm <- formula(paste0(x$Y, '~ Treated'))
          tt <- t.test(frm, subset(DT, Program == x$Program))
          x$T <- tt$statistic
          x$P <- tt$p.value
          x
      })