计算R中一组多行之间的差异
Calculate difference between multiple rows by a group in R
我有一个这样的数据框(比这个例子有更多的观察和代码变量):
code tmp wek sbd
<chr> <chr> <dbl> <dbl>
1 abc01 T1 1 7.83
2 abc01 T1 1 7.83
3 abc01 T1 2 8.5
4 abc01 T1 2 8.5
5 abc01 T1 1 7.83
6 abc01 T1 1 7.83
7 abc01 T1 1 7.83
8 abc01 T1 1 7.83
9 abc01 T1 1 7.83
10 abc01 T2 1 7.56
11 abc01 T2 1 7.56
12 abc01 T2 2 7.22
13 abc01 T2 2 7.22
14 abc01 T2 1 7.56
15 abc01 T2 1 7.56
16 abc01 T2 1 7.56
17 abc01 T2 1 7.56
18 abc01 T2 1 7.56
现在我想计算一个新变量,它通过代码和 tmp 变量给出 wek = 1 和 wek = 2 之间变量 sbd 的差异。
到目前为止,我只是找到了可以区分连续行的函数,但这不适合我的情况。
您可以使用match
在wk
1和2处获得相应的sbd
值。
library(dplyr)
df %>%
group_by(code, tmp) %>%
summarise(diff = sbd[match(1, wek)] - sbd[match(2, wek)])
# code tmp diff
# <chr> <chr> <dbl>
#1 abc01 T1 -0.67
#2 abc01 T2 0.34
如果要在数据框中添加一个新列以保持行相同,请使用 mutate
而不是 summarise
。
数据
如果您在 reproducible format
中提供数据,会更容易提供帮助
df <- structure(list(code = c("abc01", "abc01", "abc01", "abc01", "abc01",
"abc01", "abc01", "abc01", "abc01", "abc01", "abc01", "abc01",
"abc01", "abc01", "abc01", "abc01", "abc01", "abc01"), tmp = c("T1",
"T1", "T1", "T1", "T1", "T1", "T1", "T1", "T1", "T2", "T2", "T2",
"T2", "T2", "T2", "T2", "T2", "T2"), wek = c(1L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L), sbd = c(7.83,
7.83, 8.5, 8.5, 7.83, 7.83, 7.83, 7.83, 7.83, 7.56, 7.56, 7.22,
7.22, 7.56, 7.56, 7.56, 7.56, 7.56)),
class = "data.frame", row.names = c(NA, -18L))
使用 distinct
可能有效
df %>%
group_by(code, tmp) %>%
distinct() %>%
summarise(diff = diff(sbd))
code tmp diff
<chr> <chr> <dbl>
1 abc01 T1 0.67
2 abc01 T2 -0.34
我有一个这样的数据框(比这个例子有更多的观察和代码变量):
code tmp wek sbd
<chr> <chr> <dbl> <dbl>
1 abc01 T1 1 7.83
2 abc01 T1 1 7.83
3 abc01 T1 2 8.5
4 abc01 T1 2 8.5
5 abc01 T1 1 7.83
6 abc01 T1 1 7.83
7 abc01 T1 1 7.83
8 abc01 T1 1 7.83
9 abc01 T1 1 7.83
10 abc01 T2 1 7.56
11 abc01 T2 1 7.56
12 abc01 T2 2 7.22
13 abc01 T2 2 7.22
14 abc01 T2 1 7.56
15 abc01 T2 1 7.56
16 abc01 T2 1 7.56
17 abc01 T2 1 7.56
18 abc01 T2 1 7.56
现在我想计算一个新变量,它通过代码和 tmp 变量给出 wek = 1 和 wek = 2 之间变量 sbd 的差异。
到目前为止,我只是找到了可以区分连续行的函数,但这不适合我的情况。
您可以使用match
在wk
1和2处获得相应的sbd
值。
library(dplyr)
df %>%
group_by(code, tmp) %>%
summarise(diff = sbd[match(1, wek)] - sbd[match(2, wek)])
# code tmp diff
# <chr> <chr> <dbl>
#1 abc01 T1 -0.67
#2 abc01 T2 0.34
如果要在数据框中添加一个新列以保持行相同,请使用 mutate
而不是 summarise
。
数据
如果您在 reproducible format
中提供数据,会更容易提供帮助df <- structure(list(code = c("abc01", "abc01", "abc01", "abc01", "abc01",
"abc01", "abc01", "abc01", "abc01", "abc01", "abc01", "abc01",
"abc01", "abc01", "abc01", "abc01", "abc01", "abc01"), tmp = c("T1",
"T1", "T1", "T1", "T1", "T1", "T1", "T1", "T1", "T2", "T2", "T2",
"T2", "T2", "T2", "T2", "T2", "T2"), wek = c(1L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L), sbd = c(7.83,
7.83, 8.5, 8.5, 7.83, 7.83, 7.83, 7.83, 7.83, 7.56, 7.56, 7.22,
7.22, 7.56, 7.56, 7.56, 7.56, 7.56)),
class = "data.frame", row.names = c(NA, -18L))
使用 distinct
可能有效
df %>%
group_by(code, tmp) %>%
distinct() %>%
summarise(diff = diff(sbd))
code tmp diff
<chr> <chr> <dbl>
1 abc01 T1 0.67
2 abc01 T2 -0.34