训练BERT Keras模型时出现OOM错误

OOM error when training the BERT Keras model

我正在使用 Keras 训练微调的 BERT 模型。但是,当我开始在 GPU 上进行训练时,我遇到了 OOM 错误。下面是我模型的代码。

  max_len = 256
  input_word_ids = tf.keras.layers.Input(shape=(max_len,), dtype=tf.int32, name="input_word_ids")
  input_mask = tf.keras.layers.Input(shape=(max_len,), dtype=tf.int32, name="input_mask")
  segment_ids = tf.keras.layers.Input(shape=(max_len,), dtype=tf.int32, name="segment_ids")
  pooled_output, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids]) 
  x = Dense(128, activation = "relu")(sequence_output)
  x = Dropout(0.1)(x)
  out = Dense(1, activation = "sigmoid")(x)

  model = Model(inputs = [input_word_ids, input_mask, segment_ids], outputs = out)
  model.compile(Adam(lr = 2e-6), loss = 'binary_crossentropy', metrics = ['accuracy'])
  model.summary()

  train_history = model.fit(train_input, train_labels, 
                      validation_split = 0.2,
                      epochs = 3,
                      batch_size = 16)

我得到的错误是

   ---------------------------------------------------------------------------
   ResourceExhaustedError                    Traceback (most recent call last)
   <timed exec> in <module>

   /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py  in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split,     validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch,  validation_steps, validation_batch_size, validation_freq, max_queue_size, workers,  use_multiprocessing)
    1098                 _r=1):
    1099               callbacks.on_train_batch_begin(step)
 -> 1100               tmp_logs = self.train_function(iterator)
    1101               if data_handler.should_sync:
    1102                 context.async_wait()

   /opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in  __call__(self, *args, **kwds)
   826     tracing_count = self.experimental_get_tracing_count()
   827     with trace.Trace(self._name) as tm:
--> 828       result = self._call(*args, **kwds)
   829       compiler = "xla" if self._experimental_compile else "nonXla"
   830       new_tracing_count = self.experimental_get_tracing_count()

   /opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
   886         # Lifting succeeded, so variables are initialized and we can run the
   887         # stateless function.
--> 888         return self._stateless_fn(*args, **kwds)
   889     else:
   890       _, _, _, filtered_flat_args = \

  /opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in __call__(self, *args, **kwargs)
  2941        filtered_flat_args) = self._maybe_define_function(args, kwargs)
  2942     return graph_function._call_flat(
-> 2943         filtered_flat_args, captured_inputs=graph_function.captured_inputs)  #  pylint: disable=protected-access
  2944 
  2945   @property

  /opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _call_flat(self, args, captured_inputs, cancellation_manager)
  1917       # No tape is watching; skip to running the function.
  1918       return self._build_call_outputs(self._inference_function.call(
-> 1919           ctx, args, cancellation_manager=cancellation_manager))
  1920     forward_backward = self._select_forward_and_backward_functions(
  1921         args,

 /opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in call(self, ctx, args, cancellation_manager)
  558               inputs=args,
  559               attrs=attrs,
--> 560               ctx=ctx)
  561         else:
  562           outputs = execute.execute_with_cancellation(

 /opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
 58     ctx.ensure_initialized()
 59     tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
 ---> 60                                         inputs, attrs, num_outputs)
 61   except core._NotOkStatusException as e:
 62     if name is not None:

 ResourceExhaustedError:  OOM when allocating tensor with shape[16,160,1024] and type  float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
 [[{{node  model_1/keras_layer/StatefulPartitionedCall/StatefulPartitionedCall/StatefulPartitionedCall/bert_model/StatefulPartitionedCall/encoder/layer_23/output_layer_norm/moments/SquaredDifference}}]]
 Hint: If you want to see a list of allocated tensors when OOM happens, add  report_tensor_allocations_upon_oom to RunOptions for current allocation info.
 [Op:__inference_train_function_105694]

 Function call stack:
 train_function

此外,当我 运行 只有最后一个密集层的代码时,我似乎没有 OOM 错误。它仅在我添加 Dense(units = 128) 和 Dropout(0.1) 层时发生。

谁能帮我解决这个问题? 提前谢谢你。

快速 google 搜索让我找到了 this discussion,他在其中指出使用 validation_split 参数拆分数据会导致此 OOM 错误,解决方案是拆分数据在使用 sklearn.preprocessing.train_test_split() 或您喜欢的任何其他方式调用 model.fit() 之前。