Python dataframe 从列表中删除句子数
Python dataframe delete sentences number from list
我在数据框中有一列(相当)长的文本,对于每个文本,都有一个我想删除的句子索引列表。当我将文本拆分成句子时,Spacy 会生成句子索引。请考虑以下示例:
import pandas as pd
import spacy
nlp = spacy.load('en_core_web_sm')
data = {'text': ['I am A. I am 30 years old. I live in NY.','I am B. I am 25 years old. I live in SD.','I am C. I am 30 years old. I live in TX.'], 'todel': [[1, 2], [1], [1, 2]]}
df = pd.DataFrame(data)
def get_sentences(text):
text_clean = nlp(text)
sentences = text_clean.sents
sents_list = []
for sentence in sentences:
sents_list.append(str(sentence))
return sents_list
df['text'] = df['text'].apply(get_sentences)
print(df)
给出以下内容:
text todel
0 [I am A., I am 30 years old., I live in NY.] [1, 2]
1 [I am B. I am 25 years old., I live in SD.] [1]
2 [I am C. I am 30 years old., I live in TX.] [1, 2]
知道我有一个非常大的数据集,每行有超过 50 个句子要删除,你如何有效地删除存储在 todel
中的句子?
我的预期输出是:
text todel
0 [I live in NY.] [1, 2]
1 [I am 25 years old., I live in SD.] [1]
2 [I live in TX.] [1, 2]
试试这个:
import pandas as pd
data = {'text': ['I am A. I am 30 years old. I live in NY.','I am B. I am 25 years old. I live in SD.','I am C. I am 30 years old. I live in TX.'], 'todel': [[1, 2], [1], [1, 2]]}
df = pd.DataFrame(data)
def fun(sen, lst):
return ('.'.join(s for idx, s in enumerate(sen.split('.')) if idx+1 not in lst))
df['text'] = df.apply(lambda row : fun(row['text'],row['todel']), axis=1)
输出:
text todel
0 I live in NY. [1, 2]
1 I am 25 years old. I live in SD. [1]
2 I live in TX. [1, 2]
编辑基于已编辑的问题:
如果 df['text']
个不需要拆分的句子列表,您可以试试这个:
data = {'text': [['I am A.', 'I am 30 years old.', 'I live in NY.'],
['I am B.', 'I am 25 years old.', 'I live in SD.'],
['I am C.','I am 30 years old.',' I live in TX.']], 'todel': [[1, 2], [1], [1, 2]]}
df = pd.DataFrame(data)
# text todel
# 0 [I am A., I am 30 years old., I live in NY.] [1, 2]
# 1 [I am B., I am 25 years old., I live in SD.] [1]
# 2 [I am C., I am 30 years old., I live in TX.] [1, 2]
def fun(sen, lst):
return [s for idx , s in enumerate(sen) if not idx+1 in lst]
df['text'] = df.apply(lambda row : fun(row['text'],row['todel']), axis=1)
print(df)
输出:
text todel
0 [I live in NY.] [1, 2]
1 [I am 25 years old., I live in SD.] [1]
2 [ I live in TX.] [1, 2]
根据@user1740577的回答:
def fun(sen, lst):
return [i for j, i in enumerate(sen) if j not in lst]
df['text'] = df.apply(lambda row : fun(row['text'],row['todel']), axis=1)
根据 Spacy 的索引产生想要的结果:
text todel
0 [I am A.] [1, 2]
1 [I am B. I am 25 years old.] [1]
2 [I am C. I am 30 years old.] [1, 2]
我在数据框中有一列(相当)长的文本,对于每个文本,都有一个我想删除的句子索引列表。当我将文本拆分成句子时,Spacy 会生成句子索引。请考虑以下示例:
import pandas as pd
import spacy
nlp = spacy.load('en_core_web_sm')
data = {'text': ['I am A. I am 30 years old. I live in NY.','I am B. I am 25 years old. I live in SD.','I am C. I am 30 years old. I live in TX.'], 'todel': [[1, 2], [1], [1, 2]]}
df = pd.DataFrame(data)
def get_sentences(text):
text_clean = nlp(text)
sentences = text_clean.sents
sents_list = []
for sentence in sentences:
sents_list.append(str(sentence))
return sents_list
df['text'] = df['text'].apply(get_sentences)
print(df)
给出以下内容:
text todel
0 [I am A., I am 30 years old., I live in NY.] [1, 2]
1 [I am B. I am 25 years old., I live in SD.] [1]
2 [I am C. I am 30 years old., I live in TX.] [1, 2]
知道我有一个非常大的数据集,每行有超过 50 个句子要删除,你如何有效地删除存储在 todel
中的句子?
我的预期输出是:
text todel
0 [I live in NY.] [1, 2]
1 [I am 25 years old., I live in SD.] [1]
2 [I live in TX.] [1, 2]
试试这个:
import pandas as pd
data = {'text': ['I am A. I am 30 years old. I live in NY.','I am B. I am 25 years old. I live in SD.','I am C. I am 30 years old. I live in TX.'], 'todel': [[1, 2], [1], [1, 2]]}
df = pd.DataFrame(data)
def fun(sen, lst):
return ('.'.join(s for idx, s in enumerate(sen.split('.')) if idx+1 not in lst))
df['text'] = df.apply(lambda row : fun(row['text'],row['todel']), axis=1)
输出:
text todel
0 I live in NY. [1, 2]
1 I am 25 years old. I live in SD. [1]
2 I live in TX. [1, 2]
编辑基于已编辑的问题:
如果 df['text']
个不需要拆分的句子列表,您可以试试这个:
data = {'text': [['I am A.', 'I am 30 years old.', 'I live in NY.'],
['I am B.', 'I am 25 years old.', 'I live in SD.'],
['I am C.','I am 30 years old.',' I live in TX.']], 'todel': [[1, 2], [1], [1, 2]]}
df = pd.DataFrame(data)
# text todel
# 0 [I am A., I am 30 years old., I live in NY.] [1, 2]
# 1 [I am B., I am 25 years old., I live in SD.] [1]
# 2 [I am C., I am 30 years old., I live in TX.] [1, 2]
def fun(sen, lst):
return [s for idx , s in enumerate(sen) if not idx+1 in lst]
df['text'] = df.apply(lambda row : fun(row['text'],row['todel']), axis=1)
print(df)
输出:
text todel
0 [I live in NY.] [1, 2]
1 [I am 25 years old., I live in SD.] [1]
2 [ I live in TX.] [1, 2]
根据@user1740577的回答:
def fun(sen, lst):
return [i for j, i in enumerate(sen) if j not in lst]
df['text'] = df.apply(lambda row : fun(row['text'],row['todel']), axis=1)
根据 Spacy 的索引产生想要的结果:
text todel
0 [I am A.] [1, 2]
1 [I am B. I am 25 years old.] [1]
2 [I am C. I am 30 years old.] [1, 2]