Dialogflow CX 将实体导入为 CSV
Dialogflow CX import entities as CSV
我想创建一个自定义实体类型来保存包含 100 个产品名称的列表。在 Dialogflow ES 中,这很容易做到,因为您只需导入一个包含自定义实体所有条目的 csv。
例如:
"New York City", "New York City", "NYC", "New York City, USA"
"Philadelphia", "Philadelphia", "Philly", "Philadelphia, USA"
可以导入为 csv。
必须为每个自定义实体手动执行此操作将非常繁琐且耗时,因为有数百个这样的项目。
为此查看官方 Dialogflow CX REST API 文档。 https://cloud.google.com/dialogflow/cx/docs/reference/rest/v3/projects.locations.agents.entityTypes/create
下面是一个示例代码,它使用 pandas 读取 sample.csv 中的列 City 并创建一个实体。 Python
import requests
import pandas as pd
from google.oauth2 import service_account
from google.cloud.dialogflowcx_v3beta1.types import entity_type
from google.auth.transport.requests import AuthorizedSession
# sample csv data
# Name,City
# John,New York City
# Alice,Philadelphia
data = pd.read_csv("sample.csv")
cities = data['City'].tolist()
entity_json = []
for each in cities:
each_entity_value = {}
each_entity_value['value'] = each
each_entity_value['synonyms'] = [each]
entity_json.append(each_entity_value)
print(entity_json)
print('***************************************')
# download the service account json with the required permissions to call the cx agent
credentials = service_account.Credentials.from_service_account_file(
'credentials.json')
scoped_credentials = credentials.with_scopes(
['https://www.googleapis.com/auth/cloud-platform'])
authed_session = AuthorizedSession(scoped_credentials)
kind = entity_type.EntityType.Kind.KIND_MAP
# configure these variables before running the script
project_id = #YOUR-PROJECT-ID
agent_id = #YOUR-CX-AGENT-ID
location = #AGENT-LOCATION-ID
response = authed_session.post('https://dialogflow.googleapis.com/v3/projects/'+ project_id + '/locations/' + location + '/agents/' + agent_id + '/entityTypes',
json={
"kind": kind,
"displayName": "city-names",
"entities": entity_json
}
)
response_txt = response.text
print(response_txt)
这是要求。
# requirements.txt
# google-cloud-dialogflow-cx==0.5.0
# pandas==1.1.5
# requests==2.21.0
# requests-oauthlib==1.3.0
您始终可以先在 API 资源管理器上尝试,方法是提供所需的参数。
parent: projects/<project-id>/locations/<location>/agents/<agent-id>
languageCode: en
Request body: {
"displayName": "test",
"entities": [
{
"value": "string",
"synonyms": [
"string",
"str"
]
}
],
"kind": "KIND_MAP"
}
启用凭据并执行。您将获得 200 成功响应,并且将在 CX 代理控制台中创建一个新实体。
我想创建一个自定义实体类型来保存包含 100 个产品名称的列表。在 Dialogflow ES 中,这很容易做到,因为您只需导入一个包含自定义实体所有条目的 csv。
例如:
"New York City", "New York City", "NYC", "New York City, USA"
"Philadelphia", "Philadelphia", "Philly", "Philadelphia, USA"
可以导入为 csv。
必须为每个自定义实体手动执行此操作将非常繁琐且耗时,因为有数百个这样的项目。
为此查看官方 Dialogflow CX REST API 文档。 https://cloud.google.com/dialogflow/cx/docs/reference/rest/v3/projects.locations.agents.entityTypes/create
下面是一个示例代码,它使用 pandas 读取 sample.csv 中的列 City 并创建一个实体。 Python
import requests
import pandas as pd
from google.oauth2 import service_account
from google.cloud.dialogflowcx_v3beta1.types import entity_type
from google.auth.transport.requests import AuthorizedSession
# sample csv data
# Name,City
# John,New York City
# Alice,Philadelphia
data = pd.read_csv("sample.csv")
cities = data['City'].tolist()
entity_json = []
for each in cities:
each_entity_value = {}
each_entity_value['value'] = each
each_entity_value['synonyms'] = [each]
entity_json.append(each_entity_value)
print(entity_json)
print('***************************************')
# download the service account json with the required permissions to call the cx agent
credentials = service_account.Credentials.from_service_account_file(
'credentials.json')
scoped_credentials = credentials.with_scopes(
['https://www.googleapis.com/auth/cloud-platform'])
authed_session = AuthorizedSession(scoped_credentials)
kind = entity_type.EntityType.Kind.KIND_MAP
# configure these variables before running the script
project_id = #YOUR-PROJECT-ID
agent_id = #YOUR-CX-AGENT-ID
location = #AGENT-LOCATION-ID
response = authed_session.post('https://dialogflow.googleapis.com/v3/projects/'+ project_id + '/locations/' + location + '/agents/' + agent_id + '/entityTypes',
json={
"kind": kind,
"displayName": "city-names",
"entities": entity_json
}
)
response_txt = response.text
print(response_txt)
这是要求。
# requirements.txt
# google-cloud-dialogflow-cx==0.5.0
# pandas==1.1.5
# requests==2.21.0
# requests-oauthlib==1.3.0
您始终可以先在 API 资源管理器上尝试,方法是提供所需的参数。
parent: projects/<project-id>/locations/<location>/agents/<agent-id>
languageCode: en
Request body: {
"displayName": "test",
"entities": [
{
"value": "string",
"synonyms": [
"string",
"str"
]
}
],
"kind": "KIND_MAP"
}
启用凭据并执行。您将获得 200 成功响应,并且将在 CX 代理控制台中创建一个新实体。