R中的条件过滤和数据转换;根据组和值删除行并添加其他列

Conditional filtering and data transformation in R; removing rows and adding additional columns based on group and value

我正在尝试通过根据条件和按组过滤掉我不再需要的行来转换现有数据集。随后,我想添加额外的列,它本质上是一个状态列和一个 activity 实例列。这是数据框:-

rawdata<-structure(list(DateTime = c("20/02/2021 13:00", "20/02/2021 14:00", 
                                     "20/02/2021 15:00", "20/02/2021 16:00", "20/02/2021 17:00", "20/02/2021 18:00", 
                                     "20/02/2021 19:00", "20/02/2021 20:00", "20/02/2021 21:00", "20/02/2021 22:00", 
                                     "20/02/2021 23:00", "21/02/2021 00:00", "01/03/2021 00:00", "01/03/2021 01:00", 
                                     "01/03/2021 02:00", "01/03/2021 03:00", "01/03/2021 04:00", "01/03/2021 05:00", 
                                     "01/03/2021 06:00", "01/03/2021 07:00", "01/03/2021 08:00", "01/03/2021 09:00", 
                                     "01/03/2021 10:00", "01/03/2021 11:00", "01/03/2021 12:00", "01/03/2021 13:00", 
                                     "20/02/2021 13:00", "20/02/2021 14:00", "20/02/2021 15:00", "20/02/2021 16:00", 
                                     "20/02/2021 17:00", "20/02/2021 18:00", "20/02/2021 19:00", "20/02/2021 20:00", 
                                     "20/02/2021 21:00", "20/02/2021 22:00"), Cluster = c("Cluster 3", 
                                                                                          "Cluster 3", "Cluster 3", "Cluster 3", "NotActive", "NotActive", 
                                                                                          "NotActive", "Cluster 2", "Cluster 1", "Cluster 3", "NotActive", 
                                                                                          "NotActive", "NotActive", "Cluster 5", "Cluster 5", "Cluster 4", 
                                                                                          "NotActive", "NotActive", "NotActive", "NotActive", "Cluster 2", 
                                                                                          "Cluster 2", "Cluster 3", "NotActive", "NotActive", "NotActive", 
                                                                                          "NotActive", "NotActive", "NotActive", "NotActive", "NotActive", 
                                                                                          "NotActive", "Cluster 1", "Cluster 2", "NotActive", "NotActive"
                                     ), UserID = c("AAA", "AAA", "AAA", "AAA", "AAA", "AAA", "AAA", 
                                                   "AAA", "AAA", "AAA", "AAA", "AAA", "AAA", "BBB", "BBB", "BBB", 
                                                   "BBB", "BBB", "BBB", "BBB", "BBB", "BBB", "BBB", "BBB", "BBB", 
                                                   "BBB", "DDD", "DDD", "DDD", "DDD", "DDD", "DDD", "DDD", "DDD", 
                                                   "DDD", "DDD")), class = "data.frame", row.names = c(NA, -36L))
print(rawdata)
           DateTime   Cluster UserID
           DateTime   Cluster UserID
1  20/02/2021 13:00 Cluster 3    AAA
2  20/02/2021 14:00 Cluster 3    AAA
3  20/02/2021 15:00 Cluster 3    AAA
4  20/02/2021 16:00 Cluster 3    AAA
5  20/02/2021 17:00 NotActive    AAA
6  20/02/2021 18:00 NotActive    AAA
7  20/02/2021 19:00 NotActive    AAA
8  20/02/2021 20:00 Cluster 2    AAA
9  20/02/2021 21:00 Cluster 1    AAA
10 20/02/2021 22:00 Cluster 3    AAA
11 20/02/2021 23:00 NotActive    AAA
12 21/02/2021 00:00 NotActive    AAA
13 01/03/2021 00:00 NotActive    AAA
14 01/03/2021 01:00 Cluster 5    BBB
15 01/03/2021 02:00 Cluster 5    BBB
16 01/03/2021 03:00 Cluster 4    BBB
17 01/03/2021 04:00 NotActive    BBB
18 01/03/2021 05:00 NotActive    BBB
19 01/03/2021 06:00 NotActive    BBB
20 01/03/2021 07:00 NotActive    BBB
21 01/03/2021 08:00 Cluster 2    BBB
22 01/03/2021 09:00 Cluster 2    BBB
23 01/03/2021 10:00 Cluster 3    BBB
24 01/03/2021 11:00 NotActive    BBB
25 01/03/2021 12:00 NotActive    BBB
26 01/03/2021 13:00 NotActive    BBB
27 20/02/2021 13:00 NotActive    DDD
28 20/02/2021 14:00 NotActive    DDD
29 20/02/2021 15:00 NotActive    DDD
30 20/02/2021 16:00 NotActive    DDD
31 20/02/2021 17:00 NotActive    DDD
32 20/02/2021 18:00 NotActive    DDD
33 20/02/2021 19:00 Cluster 1    DDD
34 20/02/2021 20:00 Cluster 2    DDD
35 20/02/2021 21:00 NotActive    DDD
36 20/02/2021 22:00 NotActive    DDD

为了进一步说明,这里是所需的输出:-

desiredoutput<-structure(list(DateTime = structure(c(1613826000, 1613829600, 
                                                     1613833200, 1613836800, 1613840400, 1613851200, 1613854800, 1613858400, 
                                                     1613862000, 1614560400, 1614564000, 1614567600, 1614571200, 1614585600, 
                                                     1614589200, 1614592800, 1614596400, 1613847600, 1613851200, 1613854800
), class = c("POSIXct", "POSIXt"), tzone = "UTC"), Cluster = c("Cluster 3", 
                                                               "Cluster 3", "Cluster 3", "Cluster 3", "NotActive", "Cluster 2", 
                                                               "Cluster 1", "Cluster 3", "NotActive", "Cluster 5", "Cluster 5", 
                                                               "Cluster 4", "NotActive", "Cluster 2", "Cluster 2", "Cluster 3", 
                                                               "NotActive", "Cluster 1", "Cluster 2", "NotActive"), UserID = c("AAA", 
                                                                                                                               "AAA", "AAA", "AAA", "AAA", "AAA", "AAA", "AAA", "AAA", "BBB", 
                                                                                                                               "BBB", "BBB", "BBB", "BBB", "BBB", "BBB", "BBB", "DDD", "DDD", 
                                                                                                                               "DDD"), Status = c("Start", "Ongoing", "Ongoing", "Ongoing", 
                                                                                                                                                  "Complete", "Start", "Ongoing", "Ongoing", "Complete", "Start", 
                                                                                                                                                  "Ongoing", "Ongoing", "Complete", "Start", "Ongoing", "Ongoing", 
                                                                                                                                                  "Complete", "Start", "Ongoing", "Complete"), Instance = c(1, 
                                                                                                                                                                                                            2, 3, 4, 5, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3)), row.names = c(NA, 
                                                                                                                                                                                                                                                                                     -20L), class = c("tbl_df", "tbl", "data.frame"))

print(desiredoutput)
      DateTime            Cluster   UserID Status   Instance
   <dttm>              <chr>     <chr>  <chr>       <dbl>
 1 2021-02-20 13:00:00 Cluster 3 AAA    Start           1
 2 2021-02-20 14:00:00 Cluster 3 AAA    Ongoing         2
 3 2021-02-20 15:00:00 Cluster 3 AAA    Ongoing         3
 4 2021-02-20 16:00:00 Cluster 3 AAA    Ongoing         4
 5 2021-02-20 17:00:00 NotActive AAA    Complete        5
 6 2021-02-20 20:00:00 Cluster 2 AAA    Start           1
 7 2021-02-20 21:00:00 Cluster 1 AAA    Ongoing         2
 8 2021-02-20 22:00:00 Cluster 3 AAA    Ongoing         3
 9 2021-02-20 23:00:00 NotActive AAA    Complete        4
10 2021-03-01 01:00:00 Cluster 5 BBB    Start           1
11 2021-03-01 02:00:00 Cluster 5 BBB    Ongoing         2
12 2021-03-01 03:00:00 Cluster 4 BBB    Ongoing         3
13 2021-03-01 04:00:00 NotActive BBB    Complete        4
14 2021-03-01 08:00:00 Cluster 2 BBB    Start           1
15 2021-03-01 09:00:00 Cluster 2 BBB    Ongoing         2
16 2021-03-01 10:00:00 Cluster 3 BBB    Ongoing         3
17 2021-03-01 11:00:00 NotActive BBB    Complete        4
18 2021-02-20 19:00:00 Cluster 1 DDD    Start           1
19 2021-02-20 20:00:00 Cluster 2 DDD    Ongoing         2
20 2021-02-20 21:00:00 NotActive DDD    Complete        3

我想要的是在 Cluster 列中(按 UserID),如果值为 NotActive,则保留第一个 NotActive 值并丢弃剩余 NotActive 行,直到它是别的东西。同样,我想创建一个“状态”列,该列中的第一个值对应于 Start,直到第一个 NotActive 值对应于 CompleteOngoing 之间的所有其他内容。最后,Instance 列只是在 Status 列中从 1==Start 到 N==Complete 编号。

任何帮助将不胜感激:)

这是一个 dplyr 方法 -

library(dplyr)

rawdata %>%
  #for each user id
  group_by(UserID) %>%
  #drop the repeated the 'NotActive' rows
  filter(Cluster != 'NotActive' | lag(Cluster != 'NotActive', default = TRUE)) %>%
  #Drop the rows that begins with 'NotActive'. 
  filter(!(row_number() == 1 & Cluster == 'NotActive')) %>%
  #Create a group column for each cycle
  group_by(grp = cumsum(lag(Cluster == 'NotActive', default = TRUE)), .add = TRUE) %>%
  #Create a status column which starts with 'Start' and ends with 'Complete'
  #fill it with 'Ongoing' in between. 
  #Create an Instance column using row_number()
  mutate(Status = c('Start', rep('Ongoing', n() - 2), 'Complete'), 
         Instance = row_number()) %>%
  ungroup %>%
  select(-grp)

此 returns 以下数据框。

#   DateTime         Cluster   UserID Status   Instance
#   <chr>            <chr>     <chr>  <chr>       <int>
# 1 20/02/2021 13:00 Cluster 3 AAA    Start           1
# 2 20/02/2021 14:00 Cluster 3 AAA    Ongoing         2
# 3 20/02/2021 15:00 Cluster 3 AAA    Ongoing         3
# 4 20/02/2021 16:00 Cluster 3 AAA    Ongoing         4
# 5 20/02/2021 17:00 NotActive AAA    Complete        5
# 6 20/02/2021 20:00 Cluster 2 AAA    Start           1
# 7 20/02/2021 21:00 Cluster 1 AAA    Ongoing         2
# 8 20/02/2021 22:00 Cluster 3 AAA    Ongoing         3
# 9 20/02/2021 23:00 NotActive AAA    Complete        4
#10 01/03/2021 01:00 Cluster 5 BBB    Start           1
#11 01/03/2021 02:00 Cluster 5 BBB    Ongoing         2
#12 01/03/2021 03:00 Cluster 4 BBB    Ongoing         3
#13 01/03/2021 04:00 NotActive BBB    Complete        4
#14 01/03/2021 08:00 Cluster 2 BBB    Start           1
#15 01/03/2021 09:00 Cluster 2 BBB    Ongoing         2
#16 01/03/2021 10:00 Cluster 3 BBB    Ongoing         3
#17 01/03/2021 11:00 NotActive BBB    Complete        4
#18 20/02/2021 19:00 Cluster 1 DDD    Start           1
#19 20/02/2021 20:00 Cluster 2 DDD    Ongoing         2
#20 20/02/2021 21:00 NotActive DDD    Complete        3