是否可以创建 mediapipe body 姿势地标和连接的动画 3D 散点图?
Is it possible to create a plotly animated 3D scatter plot of mediapipe's body pose landmarks and connections?
我目前正在做一个项目,我正在使用 mediapipe 的 body 姿势估计库,我知道使用 plotly 我们可以创建动画 3D 散点图。
我想知道是否可以使用 plotly 创建 body 姿势地标和 mediapipe 提供的连接的动画图?
它与 mediapipe 的 in-built 功能相同:
mp_draw.plot_landmarks()
但具有 plotly 的交互性和动画时间轴。
- 查看
mp_draw.plot_landmarks()
的代码,它使用 matplotlib。因此 plotly 版本可以编码
- 做到了这一点,这个版本returns一个plotly图。我确定可以进一步清理代码
- 可以通过在多个结果中构建帧来构建动画
设置
import cv2
import math
import numpy as np
import plotly.express as px
from pathlib import Path
import mediapipe as mp
uploaded = {
Path.home()
.joinpath("Downloads")
.joinpath("thao-le-hoang-v4zceVZ5HK8-unsplash.jpg"): ""
}
uploaded = {str(k): i for k, i in uploaded.items()}
# Read images with OpenCV.
images = {name: cv2.imread(name) for name in uploaded.keys()}
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
# Run MediaPipe Pose and plot 3d pose world landmarks.
with mp_pose.Pose(
static_image_mode=True, min_detection_confidence=0.5, model_complexity=2
) as pose:
for name, image in images.items():
results = pose.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
mp_drawing.plot_landmarks(
results.pose_world_landmarks, mp_pose.POSE_CONNECTIONS)
阴谋plot_landmarks()
import pandas as pd
import plotly.graph_objects as go
_PRESENCE_THRESHOLD = 0.5
_VISIBILITY_THRESHOLD = 0.5
def plot_landmarks(
landmark_list,
connections=None,
):
if not landmark_list:
return
plotted_landmarks = {}
for idx, landmark in enumerate(landmark_list.landmark):
if (
landmark.HasField("visibility")
and landmark.visibility < _VISIBILITY_THRESHOLD
) or (
landmark.HasField("presence") and landmark.presence < _PRESENCE_THRESHOLD
):
continue
plotted_landmarks[idx] = (-landmark.z, landmark.x, -landmark.y)
if connections:
out_cn = []
num_landmarks = len(landmark_list.landmark)
# Draws the connections if the start and end landmarks are both visible.
for connection in connections:
start_idx = connection[0]
end_idx = connection[1]
if not (0 <= start_idx < num_landmarks and 0 <= end_idx < num_landmarks):
raise ValueError(
f"Landmark index is out of range. Invalid connection "
f"from landmark #{start_idx} to landmark #{end_idx}."
)
if start_idx in plotted_landmarks and end_idx in plotted_landmarks:
landmark_pair = [
plotted_landmarks[start_idx],
plotted_landmarks[end_idx],
]
out_cn.append(
dict(
xs=[landmark_pair[0][0], landmark_pair[1][0]],
ys=[landmark_pair[0][1], landmark_pair[1][1]],
zs=[landmark_pair[0][2], landmark_pair[1][2]],
)
)
cn2 = {"xs": [], "ys": [], "zs": []}
for pair in out_cn:
for k in pair.keys():
cn2[k].append(pair[k][0])
cn2[k].append(pair[k][1])
cn2[k].append(None)
df = pd.DataFrame(plotted_landmarks).T.rename(columns={0: "z", 1: "x", 2: "y"})
df["lm"] = df.index.map(lambda s: mp_pose.PoseLandmark(s).name).values
fig = (
px.scatter_3d(df, x="z", y="x", z="y", hover_name="lm")
.update_traces(marker={"color": "red"})
.update_layout(
margin={"l": 0, "r": 0, "t": 0, "b": 0},
scene={"camera": {"eye": {"x": 2.1, "y": 0, "z": 0}}},
)
)
fig.add_traces(
[
go.Scatter3d(
x=cn2["xs"],
y=cn2["ys"],
z=cn2["zs"],
mode="lines",
line={"color": "black", "width": 5},
name="connections",
)
]
)
return fig
试一试
plot_landmarks(
results.pose_world_landmarks, mp_pose.POSE_CONNECTIONS)
我目前正在做一个项目,我正在使用 mediapipe 的 body 姿势估计库,我知道使用 plotly 我们可以创建动画 3D 散点图。 我想知道是否可以使用 plotly 创建 body 姿势地标和 mediapipe 提供的连接的动画图?
它与 mediapipe 的 in-built 功能相同:
mp_draw.plot_landmarks()
但具有 plotly 的交互性和动画时间轴。
- 查看
mp_draw.plot_landmarks()
的代码,它使用 matplotlib。因此 plotly 版本可以编码 - 做到了这一点,这个版本returns一个plotly图。我确定可以进一步清理代码
- 可以通过在多个结果中构建帧来构建动画
设置
import cv2
import math
import numpy as np
import plotly.express as px
from pathlib import Path
import mediapipe as mp
uploaded = {
Path.home()
.joinpath("Downloads")
.joinpath("thao-le-hoang-v4zceVZ5HK8-unsplash.jpg"): ""
}
uploaded = {str(k): i for k, i in uploaded.items()}
# Read images with OpenCV.
images = {name: cv2.imread(name) for name in uploaded.keys()}
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
# Run MediaPipe Pose and plot 3d pose world landmarks.
with mp_pose.Pose(
static_image_mode=True, min_detection_confidence=0.5, model_complexity=2
) as pose:
for name, image in images.items():
results = pose.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
mp_drawing.plot_landmarks(
results.pose_world_landmarks, mp_pose.POSE_CONNECTIONS)
阴谋plot_landmarks()
import pandas as pd
import plotly.graph_objects as go
_PRESENCE_THRESHOLD = 0.5
_VISIBILITY_THRESHOLD = 0.5
def plot_landmarks(
landmark_list,
connections=None,
):
if not landmark_list:
return
plotted_landmarks = {}
for idx, landmark in enumerate(landmark_list.landmark):
if (
landmark.HasField("visibility")
and landmark.visibility < _VISIBILITY_THRESHOLD
) or (
landmark.HasField("presence") and landmark.presence < _PRESENCE_THRESHOLD
):
continue
plotted_landmarks[idx] = (-landmark.z, landmark.x, -landmark.y)
if connections:
out_cn = []
num_landmarks = len(landmark_list.landmark)
# Draws the connections if the start and end landmarks are both visible.
for connection in connections:
start_idx = connection[0]
end_idx = connection[1]
if not (0 <= start_idx < num_landmarks and 0 <= end_idx < num_landmarks):
raise ValueError(
f"Landmark index is out of range. Invalid connection "
f"from landmark #{start_idx} to landmark #{end_idx}."
)
if start_idx in plotted_landmarks and end_idx in plotted_landmarks:
landmark_pair = [
plotted_landmarks[start_idx],
plotted_landmarks[end_idx],
]
out_cn.append(
dict(
xs=[landmark_pair[0][0], landmark_pair[1][0]],
ys=[landmark_pair[0][1], landmark_pair[1][1]],
zs=[landmark_pair[0][2], landmark_pair[1][2]],
)
)
cn2 = {"xs": [], "ys": [], "zs": []}
for pair in out_cn:
for k in pair.keys():
cn2[k].append(pair[k][0])
cn2[k].append(pair[k][1])
cn2[k].append(None)
df = pd.DataFrame(plotted_landmarks).T.rename(columns={0: "z", 1: "x", 2: "y"})
df["lm"] = df.index.map(lambda s: mp_pose.PoseLandmark(s).name).values
fig = (
px.scatter_3d(df, x="z", y="x", z="y", hover_name="lm")
.update_traces(marker={"color": "red"})
.update_layout(
margin={"l": 0, "r": 0, "t": 0, "b": 0},
scene={"camera": {"eye": {"x": 2.1, "y": 0, "z": 0}}},
)
)
fig.add_traces(
[
go.Scatter3d(
x=cn2["xs"],
y=cn2["ys"],
z=cn2["zs"],
mode="lines",
line={"color": "black", "width": 5},
name="connections",
)
]
)
return fig
试一试
plot_landmarks(
results.pose_world_landmarks, mp_pose.POSE_CONNECTIONS)