使用 dplyr 嵌套或分组两个变量,然后对数据执行 Cronbach's alpha 函数或其他统计
Using dplyr to nest or group two variables, then perform the Cronbach's alpha function or other statistics to the data
在心理学中,下面呈现的这种数据集很常见
我想 group
所有年龄(变量 = quest
),而不是将所有量表(com_a4_1:com_a4_6
;和 gm_a4_1:gm_a4_6
等)分组,然后应用数据的可靠性函数 (psych::alpha
).
我成功创建了这个语法
d %>%
select(quest,contains("_a4_")) %>% #get the data
group_by(quest) %>% #group by all age interval
do(alpha(.)$total)
但是,我无法使用天平的项目“子”嵌套。
就我的想象而言,我将不得不旋转我的数据然后分组或嵌套。但是,我目前没有取得任何成功。我的预期结果类似于下图。有“两个嵌套结果”。第一个结果按比例分组(例如:com_a4_1:com_a4_6
),第二个结果按年龄分组(quest
)
下面是假数据和代码
library(psych)
library(tidyverse)
d %>%
select(quest,contains("_a4_")) %>% #get the data
group_by(quest) %>% #group by all age interval
do(alpha(.)$total)
d <-structure(list(quest = c(6, 4, 2, 4, 2, 6, 2, 4, 2, 2, 4, 2,
6, 4, 4, 2, 2, 4, 2, 6, 2, 2, 4, 6, 6, 4, 4, 4, 2, 6, 4, 2, 6,
4, 6, 2, 2, 4, 6, 4, 2), com_a4_1 = c(10, 0, 10, 10, 5, 10, 5,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 5, 10, 10, 0, 10,
10, 10, 10, 10, 5, 10, 10, 10, 10, 10, 10, 10, 10, 5, 10, 10,
10, 10), com_a4_2 = c(10, 10, 5, 10, 10, 5, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 5, 5, 10, 10, 10, 10, 5,
10, 10, 10, 5, 0, 10, 10, 10, 10, 0, 10, 10, 10, 10), com_a4_3 = c(10,
5, 0, 5, 10, 5, 5, 10, 10, 10, 10, 10, 5, 5, 10, 10, 5, 10, 10,
10, 10, 5, 5, 10, 10, 5, 5, 10, 10, 10, 10, 5, 10, 10, 10, 10,
0, 10, 5, 10, 10), com_a4_4 = c(10, 0, 0, 10, 5, 10, 10, 10,
10, 5, 5, 10, 10, 5, 10, 10, 5, 10, 10, 10, 10, 5, 10, 10, 10,
10, 0, 10, 5, 10, 10, 10, 10, 10, 10, 10, 5, 10, 10, 10, 10),
com_a4_5 = c(10, 0, 0, 5, 0, 10, 5, 10, 10, 5, 10, 10, 0,
10, 10, 10, 0, 10, 5, 10, 0, 0, 10, 0, 10, 10, 10, 10, 5,
0, 10, 5, 5, 10, 10, 10, 0, 10, 10, 10, 10), com_a4_6 = c(5,
10, 0, 10, 10, 5, 10, 10, 10, 0, 10, 10, 5, 10, 10, 10, 10,
10, 10, 5, 10, 10, 10, 10, 10, 10, 10, 10, 5, 10, 5, 10,
5, 10, 5, 10, 0, 10, 5, 10, 10), gm_a4_1 = c(10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 5, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10), gm_a4_2 = c(10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 5, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 5, 5, 10, 10, 10, 0, 10, 10,
5, 10, 10, 5, 10, 10, 10, 10), gm_a4_3 = c(10, 10, 10, 10,
10, 5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 0, 0, 10, 10, 10, 0, 10, 10, 10,
10, 10, 5, 10, 10, 10, 10), gm_a4_4 = c(0, 5, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 5,
10, 10, 10, 10, 10, 0, 0, 10, 10, 10, 0, 10, 5, 5, 5, 10,
10, 10, 10, 10, 10), gm_a4_5 = c(10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 5, 10, 10, 10, 5, 10,
5, 10, 10, 10, 10), gm_a4_6 = c(0, 10, 5, 5, 10, 5, 5, 10,
10, 5, 10, 10, 0, 10, 10, 10, 5, 10, 5, 10, 10, 10, 10, 0,
10, 10, 10, 10, 10, 0, 10, 10, 10, 10, 0, 10, 0, 10, 10,
10, 10), fm_a4_1 = c(10, 5, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 5, 10, 10, 10, 10, 5, 0, 10, 10, 0, 5,
10, 10, 10, 10, 5, 5, 10, 10, 5, 5, 10, 10, 10, 10, 10),
fm_a4_2 = c(10, 10, 10, 10, 0, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 5, 10, 10, 10, 10, 10, 10, 5,
10, 10, 5, 10, 10, 10, 10, 5, 10, 10, 10, 10, 10, 10), fm_a4_3 = c(0,
5, 10, 10, 5, 10, 5, 10, 10, 10, 10, 10, 5, 10, 5, 5, 5,
10, 10, 5, 0, 10, 5, 10, 5, 10, 10, 0, 10, 10, 5, 10, 10,
10, 0, 10, 0, 10, 10, 10, 10), fm_a4_4 = c(10, 5, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 5, 10, 10, 10, 5, 10, 10, 10, 0, 10, 10, 10,
10, 10, 0, 10, 10, 10, 10), fm_a4_5 = c(0, 5, 10, 10, 10,
0, 10, 10, 10, 10, 10, 10, 0, 10, 10, 5, 10, 10, 5, 0, 10,
10, 10, 10, 10, 10, 5, 10, 10, 0, 5, 10, 0, 10, 0, 5, 5,
5, 10, 10, 10), fm_a4_6 = c(10, 5, 5, 0, 0, 5, 10, 10, 10,
0, 10, 10, 5, 10, 10, 10, 0, 10, 0, 10, 10, 0, 10, 10, 5,
0, 0, 10, 10, 10, 0, 10, 10, 5, 5, 10, 0, 0, 10, 10, 5),
cg_a4_1 = c(10, 5, 10, 5, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 0, 10, 10, 10, 10, 5, 0,
10, 10, 10, 10, 5, 10, 10, 10, 10, 5, 5, 10, 10, 10), cg_a4_2 = c(5,
10, 10, 5, 10, 5, 10, 10, 10, 10, 10, 10, 5, 10, 10, 10,
10, 10, 10, 5, 10, 10, 10, 10, 10, 5, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10), cg_a4_3 = c(10,
10, 5, 10, 10, 10, 10, 10, 10, 5, 10, 10, 5, 10, 10, 10,
5, 10, 10, 10, 10, 0, 10, 10, 5, 10, 5, 10, 10, 10, 5, 10,
10, 10, 10, 10, 5, 10, 10, 10, 10), cg_a4_4 = c(10, 10, 0,
5, 5, 5, 10, 10, 10, 5, 10, 10, 0, 5, 10, 10, 5, 10, 10,
10, 10, 0, 5, 10, 10, 5, 0, 0, 10, 10, 0, 10, 0, 10, 10,
5, 0, 5, 5, 10, 10), cg_a4_5 = c(5, 0, 0, 5, 0, 10, 5, 10,
10, 0, 10, 10, 10, 10, 5, 10, 0, 10, 0, 10, 0, 0, 10, 10,
5, 10, 5, 10, 5, 5, 5, 0, 10, 10, 5, 10, 0, 10, 10, 10, 10
), cg_a4_6 = c(0, 0, 5, 10, 10, 10, 10, 10, 0, 10, 5, 10,
10, 10, 5, 10, 10, 10, 10, 10, 5, 10, 10, 10, 10, 5, 5, 10,
5, 10, 0, 10, 10, 5, 5, 10, 5, 10, 10, 10, 10), ps_a4_1 = c(10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 5, 5, 10, 5, 10, 10, 10, 10), ps_a4_2 = c(0, 10,
10, 10, 5, 10, 5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 5, 10, 5, 10, 10, 10, 5, 10, 10, 10, 5, 0, 10, 10, 10,
5, 0, 10, 5, 10, 10, 10, 10), ps_a4_3 = c(10, 0, 10, 5, 5,
10, 5, 10, 10, 5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
5, 10, 10, 10, 5, 10, 10, 10, 5, 10, 10, 10, 10, 5, 0, 5,
0, 10, 5, 10, 10), ps_a4_4 = c(10, 10, 10, 10, 5, 10, 5,
10, 10, 0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 5, 10,
10, 10, 10, 10, 10, 10, 5, 10, 5, 10, 10, 10, 10, 5, 5, 10,
10, 10, 10), ps_a4_5 = c(5, 5, 10, 5, 10, 5, 10, 10, 0, 0,
10, 10, 5, 10, 10, 10, 10, 10, 0, 10, 5, 5, 5, 10, 0, 10,
5, 10, 5, 0, 10, 10, 10, 10, 0, 5, 0, 5, 10, 10, 5), ps_a4_6 = c(5,
5, 0, 5, 0, 10, 0, 10, 5, 5, 10, 10, 5, 10, 10, 10, 0, 10,
5, 10, 5, 0, 5, 10, 5, 10, 5, 0, 5, 10, 0, 0, 10, 5, 0, 5,
0, 10, 10, 10, 10)), row.names = c(NA, -41L), class = "data.frame")
感觉 grouping/pivoting 正在尝试过度设计解决方案。一种方法是编写一个函数,允许您设置位于 contains()
.
内的值
library(psych)
library(tidyverse)
apply_alpha <- function(data, nest_contains) {
data %>%
select(quest, contains(nest_contains)) %>%
group_by(quest) %>%
do(alpha(.)$total)
}
apply_alpha(d, 'com_')
apply_alpha(d, 'gm_')
apply_alpha(d, 'fm_')
重要的是要注意,通过这种方法,我会收到大量我不熟悉的警告消息。它们来自 alpha()
函数的使用。
你可以这样做:如果这就是你要找的,请告诉我解释一下:
library(tidyverse)
library(psych)
reg_fm_a4_ <- "^fm_a4_.*"
reg_com_a4_ <- "^com_a4_.*"
reg_gm_a4_ <- "^gm_a4_.*"
reg_cg_a4_ <- "^cg_a4_.*"
reg_ps_a4_ <- "^ps_a4_.*"
regs <- c(reg_fm_a4_, reg_com_a4_, reg_gm_a4_, reg_cg_a4_, reg_ps_a4_) %>%
set_names(c("fm_a4_", "com_a4_", "gm_a4_", "cg_a4_",
"ps_a4_"))
cronbachs_alpha <-
map_df(regs, ~
d %>%
select(dplyr::matches(.x)) %>%
psych::alpha(check.keys = TRUE) %>% .$total %>%
tibble::rownames_to_column()
,.id = "scale"
)
scale rowname raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
1 fm_a4_ 0.4655172 0.4841889 0.5081686 0.1352840 0.9386944 0.12722395 8.008130 1.716728 0.16047102
2 com_a4_ 0.7246145 0.7294824 0.7367755 0.3100766 2.6966174 0.06440378 8.130081 2.056329 0.32419199
3 gm_a4_ 0.6285083 0.6818823 0.7360522 0.2632152 2.1434909 0.08701602 7.337398 1.516341 0.09958706
4 cg_a4_ 0.5260735 0.5134628 0.5966499 0.1495805 1.0553414 0.10814655 6.524390 1.737080 0.12196703
5 ps_a4_ 0.7173328 0.7486200 0.7597498 0.3317028 2.9780417 0.06479382 7.906504 1.990620 0.36281243
您可以进行整形,然后使用嵌套数据。当然,如果您不想在结果中保留嵌套数据,您可以取消选择 data
列。
此解决方案的优点(如果您这样认为)是您 a) 不需要创建额外的对象,也 b) 不需要特定的函数。
d %>%
mutate(id = 1:n()) %>%
pivot_longer(cols = c(-id, -quest)) %>%
separate(col = name,
into = c("scale", "item"),
sep = "_",
extra = "merge") %>%
pivot_wider(names_from = item) %>%
select(-id) %>%
group_by(quest, scale) %>%
nest() %>%
mutate(alpha_results = map(data, ~alpha(.)$total)) %>%
unnest_wider(alpha_results) %>%
arrange(scale, quest)
给出:
# Groups: quest, scale [15]
quest scale data raw_alpha std.alpha `G6(smc)` average_r `S/N` ase mean sd median_r
<dbl> <chr> <list> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2 cg <tibble [16 x 6]> 0.619 0.594 0.728 0.226 1.46 0.141 7.60 1.90 0.157
2 4 cg <tibble [15 x 6]> 0.677 0.696 0.807 0.276 2.29 0.126 8 1.88 0.368
3 6 cg <tibble [10 x 6]> -0.168 -0.00601 0.550 -0.00120 -0.00597 0.621 8.42 1.07 0.102
4 2 com <tibble [16 x 6]> 0.810 0.808 0.881 0.412 4.20 0.0719 7.24 2.63 0.457
5 4 com <tibble [15 x 6]> 0.673 0.613 0.842 0.209 1.58 0.110 8.83 1.60 0.201
6 6 com <tibble [10 x 6]> -0.184 0.228 0.486 0.0686 0.295 0.644 8.5 0.946 0.0970
7 2 fm <tibble [16 x 6]> 0.4 0.421 0.546 0.108 0.728 0.221 8.12 1.62 0.0953
8 4 fm <tibble [15 x 6]> 0.669 0.714 0.811 0.294 2.50 0.124 8.28 1.82 0.366
9 6 fm <tibble [10 x 6]> 0.508 0.542 0.727 0.191 1.18 0.248 7.42 1.73 0.279
10 2 gm <tibble [16 x 6]> 0.842 0.952 0.745 0.831 19.7 0.0592 9.48 1.05 0.831
11 4 gm <tibble [15 x 6]> 0.811 0.759 0.873 0.386 3.15 0.0389 8.83 1.94 0.511
12 6 gm <tibble [10 x 6]> -0.075 -0.492 -0.0806 -0.0582 -0.330 0.398 8.33 1.11 -0.111
13 2 ps <tibble [16 x 6]> 0.684 0.753 0.870 0.337 3.05 0.123 7.08 1.97 0.316
14 4 ps <tibble [15 x 6]> 0.533 0.551 0.605 0.170 1.23 0.161 8.83 1.29 0.150
15 6 ps <tibble [10 x 6]> 0.844 0.879 0.903 0.592 7.26 0.0710 7.83 2.43 0.604
我按照你的想法进行了更长时间的旋转,使用 tidyr 中的 pivot_longer()
将比例组放在行中,但将项目留在列中。 (pivot_longer()
文档中的最后两个示例是我试图记住如何执行此操作时的首选。)
但是,这取决于您在每个量表中拥有相同数量的项目;我不确定它如何支持每个比例的不同项目。
一旦事物处于更长的形式,请在 quest
上使用 nest_by()
并使用 scales 变量后跟 mutate()
来嵌套并计算每行的 alpha。
我没有在此处粘贴所有警告和消息,但有负载。如果您不再需要它,也可以删除末尾的 data
列。
library(psych)
library(dplyr)
library(tidyr)
d %>%
pivot_longer(cols = -quest,
names_to = c("scale", ".value"),
names_pattern = "(\w+_\w+_)(.)") %>%
nest_by(quest, scale) %>%
mutate(alpha(data)$total)
#> # A tibble: 15 x 12
#> # Rowwise: quest, name
#> quest name data raw_alpha std.alpha `G6(smc)` average_r `S/N` ase
#> <dbl> <chr> <list<t> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2 cg_a4_ [16 x 6] 0.619 0.594 0.728 0.226 1.46 0.141
#> 2 2 com_a~ [16 x 6] 0.810 0.808 0.881 0.412 4.20 0.0719
#> 3 2 fm_a4_ [16 x 6] 0.400 0.421 0.546 0.108 0.728 0.221
#> 4 2 gm_a4_ [16 x 6] 0.842 0.952 0.745 0.831 19.7 0.0592
#> 5 2 ps_a4_ [16 x 6] 0.684 0.753 0.870 0.337 3.05 0.123
#> 6 4 cg_a4_ [15 x 6] 0.677 0.696 0.807 0.276 2.29 0.126
#> 7 4 com_a~ [15 x 6] 0.673 0.613 0.842 0.209 1.58 0.110
#> 8 4 fm_a4_ [15 x 6] 0.669 0.714 0.811 0.294 2.50 0.124
#> 9 4 gm_a4_ [15 x 6] 0.811 0.759 0.873 0.386 3.15 0.0389
#> 10 4 ps_a4_ [15 x 6] 0.533 0.551 0.605 0.170 1.23 0.161
#> 11 6 cg_a4_ [10 x 6] -0.168 -0.00601 0.550 -0.00120 -0.00597 0.621
#> 12 6 com_a~ [10 x 6] -0.184 0.228 0.486 0.0686 0.295 0.644
#> 13 6 fm_a4_ [10 x 6] 0.508 0.542 0.727 0.191 1.18 0.248
#> 14 6 gm_a4_ [10 x 6] -0.075 -0.492 -0.0806 -0.0582 -0.330 0.398
#> 15 6 ps_a4_ [10 x 6] 0.844 0.879 0.903 0.592 7.26 0.0710
#> # ... with 3 more variables: mean <dbl>, sd <dbl>, median_r <dbl>
由 reprex package (v2.0.0)
于 2021-09-23 创建
在心理学中,下面呈现的这种数据集很常见
我想 group
所有年龄(变量 = quest
),而不是将所有量表(com_a4_1:com_a4_6
;和 gm_a4_1:gm_a4_6
等)分组,然后应用数据的可靠性函数 (psych::alpha
).
我成功创建了这个语法
d %>%
select(quest,contains("_a4_")) %>% #get the data
group_by(quest) %>% #group by all age interval
do(alpha(.)$total)
但是,我无法使用天平的项目“子”嵌套。
就我的想象而言,我将不得不旋转我的数据然后分组或嵌套。但是,我目前没有取得任何成功。我的预期结果类似于下图。有“两个嵌套结果”。第一个结果按比例分组(例如:com_a4_1:com_a4_6
),第二个结果按年龄分组(quest
)
下面是假数据和代码
library(psych)
library(tidyverse)
d %>%
select(quest,contains("_a4_")) %>% #get the data
group_by(quest) %>% #group by all age interval
do(alpha(.)$total)
d <-structure(list(quest = c(6, 4, 2, 4, 2, 6, 2, 4, 2, 2, 4, 2,
6, 4, 4, 2, 2, 4, 2, 6, 2, 2, 4, 6, 6, 4, 4, 4, 2, 6, 4, 2, 6,
4, 6, 2, 2, 4, 6, 4, 2), com_a4_1 = c(10, 0, 10, 10, 5, 10, 5,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 5, 10, 10, 0, 10,
10, 10, 10, 10, 5, 10, 10, 10, 10, 10, 10, 10, 10, 5, 10, 10,
10, 10), com_a4_2 = c(10, 10, 5, 10, 10, 5, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 5, 5, 10, 10, 10, 10, 5,
10, 10, 10, 5, 0, 10, 10, 10, 10, 0, 10, 10, 10, 10), com_a4_3 = c(10,
5, 0, 5, 10, 5, 5, 10, 10, 10, 10, 10, 5, 5, 10, 10, 5, 10, 10,
10, 10, 5, 5, 10, 10, 5, 5, 10, 10, 10, 10, 5, 10, 10, 10, 10,
0, 10, 5, 10, 10), com_a4_4 = c(10, 0, 0, 10, 5, 10, 10, 10,
10, 5, 5, 10, 10, 5, 10, 10, 5, 10, 10, 10, 10, 5, 10, 10, 10,
10, 0, 10, 5, 10, 10, 10, 10, 10, 10, 10, 5, 10, 10, 10, 10),
com_a4_5 = c(10, 0, 0, 5, 0, 10, 5, 10, 10, 5, 10, 10, 0,
10, 10, 10, 0, 10, 5, 10, 0, 0, 10, 0, 10, 10, 10, 10, 5,
0, 10, 5, 5, 10, 10, 10, 0, 10, 10, 10, 10), com_a4_6 = c(5,
10, 0, 10, 10, 5, 10, 10, 10, 0, 10, 10, 5, 10, 10, 10, 10,
10, 10, 5, 10, 10, 10, 10, 10, 10, 10, 10, 5, 10, 5, 10,
5, 10, 5, 10, 0, 10, 5, 10, 10), gm_a4_1 = c(10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 5, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10), gm_a4_2 = c(10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 5, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 5, 5, 10, 10, 10, 0, 10, 10,
5, 10, 10, 5, 10, 10, 10, 10), gm_a4_3 = c(10, 10, 10, 10,
10, 5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 0, 0, 10, 10, 10, 0, 10, 10, 10,
10, 10, 5, 10, 10, 10, 10), gm_a4_4 = c(0, 5, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 5,
10, 10, 10, 10, 10, 0, 0, 10, 10, 10, 0, 10, 5, 5, 5, 10,
10, 10, 10, 10, 10), gm_a4_5 = c(10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 5, 10, 10, 10, 5, 10,
5, 10, 10, 10, 10), gm_a4_6 = c(0, 10, 5, 5, 10, 5, 5, 10,
10, 5, 10, 10, 0, 10, 10, 10, 5, 10, 5, 10, 10, 10, 10, 0,
10, 10, 10, 10, 10, 0, 10, 10, 10, 10, 0, 10, 0, 10, 10,
10, 10), fm_a4_1 = c(10, 5, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 5, 10, 10, 10, 10, 5, 0, 10, 10, 0, 5,
10, 10, 10, 10, 5, 5, 10, 10, 5, 5, 10, 10, 10, 10, 10),
fm_a4_2 = c(10, 10, 10, 10, 0, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 5, 10, 10, 10, 10, 10, 10, 5,
10, 10, 5, 10, 10, 10, 10, 5, 10, 10, 10, 10, 10, 10), fm_a4_3 = c(0,
5, 10, 10, 5, 10, 5, 10, 10, 10, 10, 10, 5, 10, 5, 5, 5,
10, 10, 5, 0, 10, 5, 10, 5, 10, 10, 0, 10, 10, 5, 10, 10,
10, 0, 10, 0, 10, 10, 10, 10), fm_a4_4 = c(10, 5, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 5, 10, 10, 10, 5, 10, 10, 10, 0, 10, 10, 10,
10, 10, 0, 10, 10, 10, 10), fm_a4_5 = c(0, 5, 10, 10, 10,
0, 10, 10, 10, 10, 10, 10, 0, 10, 10, 5, 10, 10, 5, 0, 10,
10, 10, 10, 10, 10, 5, 10, 10, 0, 5, 10, 0, 10, 0, 5, 5,
5, 10, 10, 10), fm_a4_6 = c(10, 5, 5, 0, 0, 5, 10, 10, 10,
0, 10, 10, 5, 10, 10, 10, 0, 10, 0, 10, 10, 0, 10, 10, 5,
0, 0, 10, 10, 10, 0, 10, 10, 5, 5, 10, 0, 0, 10, 10, 5),
cg_a4_1 = c(10, 5, 10, 5, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 0, 10, 10, 10, 10, 5, 0,
10, 10, 10, 10, 5, 10, 10, 10, 10, 5, 5, 10, 10, 10), cg_a4_2 = c(5,
10, 10, 5, 10, 5, 10, 10, 10, 10, 10, 10, 5, 10, 10, 10,
10, 10, 10, 5, 10, 10, 10, 10, 10, 5, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10), cg_a4_3 = c(10,
10, 5, 10, 10, 10, 10, 10, 10, 5, 10, 10, 5, 10, 10, 10,
5, 10, 10, 10, 10, 0, 10, 10, 5, 10, 5, 10, 10, 10, 5, 10,
10, 10, 10, 10, 5, 10, 10, 10, 10), cg_a4_4 = c(10, 10, 0,
5, 5, 5, 10, 10, 10, 5, 10, 10, 0, 5, 10, 10, 5, 10, 10,
10, 10, 0, 5, 10, 10, 5, 0, 0, 10, 10, 0, 10, 0, 10, 10,
5, 0, 5, 5, 10, 10), cg_a4_5 = c(5, 0, 0, 5, 0, 10, 5, 10,
10, 0, 10, 10, 10, 10, 5, 10, 0, 10, 0, 10, 0, 0, 10, 10,
5, 10, 5, 10, 5, 5, 5, 0, 10, 10, 5, 10, 0, 10, 10, 10, 10
), cg_a4_6 = c(0, 0, 5, 10, 10, 10, 10, 10, 0, 10, 5, 10,
10, 10, 5, 10, 10, 10, 10, 10, 5, 10, 10, 10, 10, 5, 5, 10,
5, 10, 0, 10, 10, 5, 5, 10, 5, 10, 10, 10, 10), ps_a4_1 = c(10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 5, 5, 10, 5, 10, 10, 10, 10), ps_a4_2 = c(0, 10,
10, 10, 5, 10, 5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 5, 10, 5, 10, 10, 10, 5, 10, 10, 10, 5, 0, 10, 10, 10,
5, 0, 10, 5, 10, 10, 10, 10), ps_a4_3 = c(10, 0, 10, 5, 5,
10, 5, 10, 10, 5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
5, 10, 10, 10, 5, 10, 10, 10, 5, 10, 10, 10, 10, 5, 0, 5,
0, 10, 5, 10, 10), ps_a4_4 = c(10, 10, 10, 10, 5, 10, 5,
10, 10, 0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 5, 10,
10, 10, 10, 10, 10, 10, 5, 10, 5, 10, 10, 10, 10, 5, 5, 10,
10, 10, 10), ps_a4_5 = c(5, 5, 10, 5, 10, 5, 10, 10, 0, 0,
10, 10, 5, 10, 10, 10, 10, 10, 0, 10, 5, 5, 5, 10, 0, 10,
5, 10, 5, 0, 10, 10, 10, 10, 0, 5, 0, 5, 10, 10, 5), ps_a4_6 = c(5,
5, 0, 5, 0, 10, 0, 10, 5, 5, 10, 10, 5, 10, 10, 10, 0, 10,
5, 10, 5, 0, 5, 10, 5, 10, 5, 0, 5, 10, 0, 0, 10, 5, 0, 5,
0, 10, 10, 10, 10)), row.names = c(NA, -41L), class = "data.frame")
感觉 grouping/pivoting 正在尝试过度设计解决方案。一种方法是编写一个函数,允许您设置位于 contains()
.
library(psych)
library(tidyverse)
apply_alpha <- function(data, nest_contains) {
data %>%
select(quest, contains(nest_contains)) %>%
group_by(quest) %>%
do(alpha(.)$total)
}
apply_alpha(d, 'com_')
apply_alpha(d, 'gm_')
apply_alpha(d, 'fm_')
重要的是要注意,通过这种方法,我会收到大量我不熟悉的警告消息。它们来自 alpha()
函数的使用。
你可以这样做:如果这就是你要找的,请告诉我解释一下:
library(tidyverse)
library(psych)
reg_fm_a4_ <- "^fm_a4_.*"
reg_com_a4_ <- "^com_a4_.*"
reg_gm_a4_ <- "^gm_a4_.*"
reg_cg_a4_ <- "^cg_a4_.*"
reg_ps_a4_ <- "^ps_a4_.*"
regs <- c(reg_fm_a4_, reg_com_a4_, reg_gm_a4_, reg_cg_a4_, reg_ps_a4_) %>%
set_names(c("fm_a4_", "com_a4_", "gm_a4_", "cg_a4_",
"ps_a4_"))
cronbachs_alpha <-
map_df(regs, ~
d %>%
select(dplyr::matches(.x)) %>%
psych::alpha(check.keys = TRUE) %>% .$total %>%
tibble::rownames_to_column()
,.id = "scale"
)
scale rowname raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
1 fm_a4_ 0.4655172 0.4841889 0.5081686 0.1352840 0.9386944 0.12722395 8.008130 1.716728 0.16047102
2 com_a4_ 0.7246145 0.7294824 0.7367755 0.3100766 2.6966174 0.06440378 8.130081 2.056329 0.32419199
3 gm_a4_ 0.6285083 0.6818823 0.7360522 0.2632152 2.1434909 0.08701602 7.337398 1.516341 0.09958706
4 cg_a4_ 0.5260735 0.5134628 0.5966499 0.1495805 1.0553414 0.10814655 6.524390 1.737080 0.12196703
5 ps_a4_ 0.7173328 0.7486200 0.7597498 0.3317028 2.9780417 0.06479382 7.906504 1.990620 0.36281243
您可以进行整形,然后使用嵌套数据。当然,如果您不想在结果中保留嵌套数据,您可以取消选择 data
列。
此解决方案的优点(如果您这样认为)是您 a) 不需要创建额外的对象,也 b) 不需要特定的函数。
d %>%
mutate(id = 1:n()) %>%
pivot_longer(cols = c(-id, -quest)) %>%
separate(col = name,
into = c("scale", "item"),
sep = "_",
extra = "merge") %>%
pivot_wider(names_from = item) %>%
select(-id) %>%
group_by(quest, scale) %>%
nest() %>%
mutate(alpha_results = map(data, ~alpha(.)$total)) %>%
unnest_wider(alpha_results) %>%
arrange(scale, quest)
给出:
# Groups: quest, scale [15]
quest scale data raw_alpha std.alpha `G6(smc)` average_r `S/N` ase mean sd median_r
<dbl> <chr> <list> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2 cg <tibble [16 x 6]> 0.619 0.594 0.728 0.226 1.46 0.141 7.60 1.90 0.157
2 4 cg <tibble [15 x 6]> 0.677 0.696 0.807 0.276 2.29 0.126 8 1.88 0.368
3 6 cg <tibble [10 x 6]> -0.168 -0.00601 0.550 -0.00120 -0.00597 0.621 8.42 1.07 0.102
4 2 com <tibble [16 x 6]> 0.810 0.808 0.881 0.412 4.20 0.0719 7.24 2.63 0.457
5 4 com <tibble [15 x 6]> 0.673 0.613 0.842 0.209 1.58 0.110 8.83 1.60 0.201
6 6 com <tibble [10 x 6]> -0.184 0.228 0.486 0.0686 0.295 0.644 8.5 0.946 0.0970
7 2 fm <tibble [16 x 6]> 0.4 0.421 0.546 0.108 0.728 0.221 8.12 1.62 0.0953
8 4 fm <tibble [15 x 6]> 0.669 0.714 0.811 0.294 2.50 0.124 8.28 1.82 0.366
9 6 fm <tibble [10 x 6]> 0.508 0.542 0.727 0.191 1.18 0.248 7.42 1.73 0.279
10 2 gm <tibble [16 x 6]> 0.842 0.952 0.745 0.831 19.7 0.0592 9.48 1.05 0.831
11 4 gm <tibble [15 x 6]> 0.811 0.759 0.873 0.386 3.15 0.0389 8.83 1.94 0.511
12 6 gm <tibble [10 x 6]> -0.075 -0.492 -0.0806 -0.0582 -0.330 0.398 8.33 1.11 -0.111
13 2 ps <tibble [16 x 6]> 0.684 0.753 0.870 0.337 3.05 0.123 7.08 1.97 0.316
14 4 ps <tibble [15 x 6]> 0.533 0.551 0.605 0.170 1.23 0.161 8.83 1.29 0.150
15 6 ps <tibble [10 x 6]> 0.844 0.879 0.903 0.592 7.26 0.0710 7.83 2.43 0.604
我按照你的想法进行了更长时间的旋转,使用 tidyr 中的 pivot_longer()
将比例组放在行中,但将项目留在列中。 (pivot_longer()
文档中的最后两个示例是我试图记住如何执行此操作时的首选。)
但是,这取决于您在每个量表中拥有相同数量的项目;我不确定它如何支持每个比例的不同项目。
一旦事物处于更长的形式,请在 quest
上使用 nest_by()
并使用 scales 变量后跟 mutate()
来嵌套并计算每行的 alpha。
我没有在此处粘贴所有警告和消息,但有负载。如果您不再需要它,也可以删除末尾的 data
列。
library(psych)
library(dplyr)
library(tidyr)
d %>%
pivot_longer(cols = -quest,
names_to = c("scale", ".value"),
names_pattern = "(\w+_\w+_)(.)") %>%
nest_by(quest, scale) %>%
mutate(alpha(data)$total)
#> # A tibble: 15 x 12
#> # Rowwise: quest, name
#> quest name data raw_alpha std.alpha `G6(smc)` average_r `S/N` ase
#> <dbl> <chr> <list<t> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2 cg_a4_ [16 x 6] 0.619 0.594 0.728 0.226 1.46 0.141
#> 2 2 com_a~ [16 x 6] 0.810 0.808 0.881 0.412 4.20 0.0719
#> 3 2 fm_a4_ [16 x 6] 0.400 0.421 0.546 0.108 0.728 0.221
#> 4 2 gm_a4_ [16 x 6] 0.842 0.952 0.745 0.831 19.7 0.0592
#> 5 2 ps_a4_ [16 x 6] 0.684 0.753 0.870 0.337 3.05 0.123
#> 6 4 cg_a4_ [15 x 6] 0.677 0.696 0.807 0.276 2.29 0.126
#> 7 4 com_a~ [15 x 6] 0.673 0.613 0.842 0.209 1.58 0.110
#> 8 4 fm_a4_ [15 x 6] 0.669 0.714 0.811 0.294 2.50 0.124
#> 9 4 gm_a4_ [15 x 6] 0.811 0.759 0.873 0.386 3.15 0.0389
#> 10 4 ps_a4_ [15 x 6] 0.533 0.551 0.605 0.170 1.23 0.161
#> 11 6 cg_a4_ [10 x 6] -0.168 -0.00601 0.550 -0.00120 -0.00597 0.621
#> 12 6 com_a~ [10 x 6] -0.184 0.228 0.486 0.0686 0.295 0.644
#> 13 6 fm_a4_ [10 x 6] 0.508 0.542 0.727 0.191 1.18 0.248
#> 14 6 gm_a4_ [10 x 6] -0.075 -0.492 -0.0806 -0.0582 -0.330 0.398
#> 15 6 ps_a4_ [10 x 6] 0.844 0.879 0.903 0.592 7.26 0.0710
#> # ... with 3 more variables: mean <dbl>, sd <dbl>, median_r <dbl>
由 reprex package (v2.0.0)
于 2021-09-23 创建