无法在 Google AI Platform 上使用 jupyter notebook 实例连接到 R 内核
Cannot connect to R kernel using jupyter notebook instance on Google AI Platform
当我按照此处的说明创建新实例时 https://cloud.google.com/architecture/data-science-with-r-on-gcp-eda,笔记本无法连接到 R 内核。它说正在初始化,然后连接然后断开连接。
当我通过 SSH 连接到服务器并调用 curl http://127.0.0.1:8080/api/kernelspecs
时,我得到以下输出。
{
"default": "python3",
"kernelspecs": {
"python3": {
"name": "python3",
"spec": {
"argv": [
"/opt/conda/bin/python", "-m","ipykernel_launcher", "-f", "{connection_file}"
],
"env": {},
"display_name": "Python 3",
"language": "python",
"interrupt_mode": "signal",
"metadata": {"debugger": true}
},
"resources": {
"logo-32x32": "/kernelspecs/python3/logo-32x32.png",
"logo-64x64": "/kernelspecs/python3/logo-64x64.png"
}
},
"ir": {
"name": "ir",
"spec": {
"argv": [
"/usr/lib/R/bin/R", "--slave", "-e", "IRkernel::main()", "--args", "{connection_file}"
],
"env": {},
"display_name": "R",
"language": "R",
"interrupt_mode": "signal",
"metadata": {}
},
"resources": {
"kernel.js": "/kernelspecs/ir/kernel.js",
"logo-64x64": "/kernelspecs/ir/logo-64x64.png"}
},
"conda-root-py": {
"name": "conda-root-py",
"spec": {
"argv": ["/opt/conda/bin/python", "-m", "ipykernel_launcher", "-f", "{connection_file}"
],
"env": {},
"display_name":
"Python [conda env:root] *",
"language": "python",
"interrupt_mode": "signal",
"metadata": {
"debugger": true,
"conda_env_name": "root",
"conda_env_path": "/opt/conda"
}
},
"resources": {
"logo-32x32": "/kernelspecs/conda-root-py/logo-32x32.png",
"logo-64x64": "/kernelspecs/conda-root-py/logo-64x64.png"
}
}
}
}root@r-ma5832xxxxxxxxx
这对于使用 R4.0 环境选项创建的实例是否正确?
当我检查服务器日志时,我发现了这个:
Error: package ‘IRkernel’ was installed before R 4.0.0: please re-install it
我打开了一个连接到服务器的 ssh 控制台并 cd 到 /etc/R,然后通过键入 'R'.
启动了 R
然后我尝试按照此处的说明使用 install.packages('IRkernel')
安装软件包:https://github.com/IRkernel/IRkernel only I ran into a whole lot of missing dependencies. I tried to update my version of R by following the instructions here: https://cran.r-project.org/bin/linux/debian/#debian-buster-stable 但事实证明我是最新的。唯一剩下的就是更新我所有的包。我按照 cran 网站上的说明进行操作,然后回到我的 jupyter notebook 并可以连接到内核。
最后,我所要做的就是 运行 在我服务器上的 R 中执行下面的命令来解锁内核。
update.packages(lib.loc="/usr/local/lib/R/site-library", ask = FALSE, checkBuilt = TRUE, Ncpus = 16)
当我按照此处的说明创建新实例时 https://cloud.google.com/architecture/data-science-with-r-on-gcp-eda,笔记本无法连接到 R 内核。它说正在初始化,然后连接然后断开连接。
当我通过 SSH 连接到服务器并调用 curl http://127.0.0.1:8080/api/kernelspecs
时,我得到以下输出。
{
"default": "python3",
"kernelspecs": {
"python3": {
"name": "python3",
"spec": {
"argv": [
"/opt/conda/bin/python", "-m","ipykernel_launcher", "-f", "{connection_file}"
],
"env": {},
"display_name": "Python 3",
"language": "python",
"interrupt_mode": "signal",
"metadata": {"debugger": true}
},
"resources": {
"logo-32x32": "/kernelspecs/python3/logo-32x32.png",
"logo-64x64": "/kernelspecs/python3/logo-64x64.png"
}
},
"ir": {
"name": "ir",
"spec": {
"argv": [
"/usr/lib/R/bin/R", "--slave", "-e", "IRkernel::main()", "--args", "{connection_file}"
],
"env": {},
"display_name": "R",
"language": "R",
"interrupt_mode": "signal",
"metadata": {}
},
"resources": {
"kernel.js": "/kernelspecs/ir/kernel.js",
"logo-64x64": "/kernelspecs/ir/logo-64x64.png"}
},
"conda-root-py": {
"name": "conda-root-py",
"spec": {
"argv": ["/opt/conda/bin/python", "-m", "ipykernel_launcher", "-f", "{connection_file}"
],
"env": {},
"display_name":
"Python [conda env:root] *",
"language": "python",
"interrupt_mode": "signal",
"metadata": {
"debugger": true,
"conda_env_name": "root",
"conda_env_path": "/opt/conda"
}
},
"resources": {
"logo-32x32": "/kernelspecs/conda-root-py/logo-32x32.png",
"logo-64x64": "/kernelspecs/conda-root-py/logo-64x64.png"
}
}
}
}root@r-ma5832xxxxxxxxx
这对于使用 R4.0 环境选项创建的实例是否正确?
当我检查服务器日志时,我发现了这个:
Error: package ‘IRkernel’ was installed before R 4.0.0: please re-install it
我打开了一个连接到服务器的 ssh 控制台并 cd 到 /etc/R,然后通过键入 'R'.
启动了 R然后我尝试按照此处的说明使用 install.packages('IRkernel')
安装软件包:https://github.com/IRkernel/IRkernel only I ran into a whole lot of missing dependencies. I tried to update my version of R by following the instructions here: https://cran.r-project.org/bin/linux/debian/#debian-buster-stable 但事实证明我是最新的。唯一剩下的就是更新我所有的包。我按照 cran 网站上的说明进行操作,然后回到我的 jupyter notebook 并可以连接到内核。
最后,我所要做的就是 运行 在我服务器上的 R 中执行下面的命令来解锁内核。
update.packages(lib.loc="/usr/local/lib/R/site-library", ask = FALSE, checkBuilt = TRUE, Ncpus = 16)