Mongodb- 按键对数组进行分组
Mongodb- group an array by key
我在多个文档中有一个数组字段(包含对象),我想将这些数组合并为一个数组并按对象键对数组进行分组。我设法对数组进行了分组,但我不知道如何对数据进行分组。请参阅下面我尝试的代码
const test = await salesModel.aggregate([
{ $unwind: "$items" },
{
$group: {
_id: 0,
data: { $addToSet: '$items' }
},
}
])
查询结果:
{
_id: 0,
data: [
{
_id: 61435b3c0f773abaf77a367e,
price: 3000,
type: 'service',
sellerId: 61307abca667678553be81cb,
},
{
_id: 613115808330be818abaa613,
price: 788,
type: 'product',
sellerId: 61307abca667678553be81cb,
},
{
_id: 61307c1ea667676078be81cc,
price: 1200,
type: 'product',
sellerId: 61307abca667678553be81cb,
}
]
}
现在我想按对象键 data.sellerId
和总价
对数据数组进行分组
期望的输出:
{
data: [
{
sumPrice: 788,
sellerId: 613115808330be818abaa613,
},
{
sumPrice: 1200,
sellerId: 61307abca667678553be81cb,
}
]
}
使用当前查询和结果扩展:
$unwind
:解构数组字段为多个文档
$group
:按 data.sellerId
分组以对 data.price
. 求和 ($sum
)
$group
: Group by 0 with $addToSet
将多个文档合并为一个文档 with data
.
MongoDB aggregation query
db.collection.aggregate([
{
$unwind: "$data"
},
{
$group: {
_id: {
sellerId: "$data.sellerId"
},
"sumPrice": {
$sum: "$data.price"
}
}
},
{
"$group": {
"_id": 0,
"data": {
$addToSet: {
"sellerId": "$_id.sellerId",
"sumPrice": "$sumPrice"
}
}
}
}
])
Output
[
{
"_id": 0,
"data": [
{
"sellerId": ObjectId("61307abca667678553be81cb"),
"sumPrice": 4988
}
]
}
]
如果您想重新编写查询,这里是带有示例输入的查询。
Input
[
{
items: [
{
_id: ObjectId("61435b3c0f773abaf77a367e"),
price: 3000,
type: "service",
sellerId: ObjectId("61307abca667678553be81cb"),
},
{
_id: ObjectId("613115808330be818abaa613"),
price: 788,
type: "product",
sellerId: ObjectId("61307abca667678553be81cb"),
},
{
_id: ObjectId("61307c1ea667676078be81cc"),
price: 1200,
type: "product",
sellerId: ObjectId("61307abca667678553be81cb"),
}
]
}
]
Mongo aggregation query
db.collection.aggregate([
{
$unwind: "$items"
},
{
$group: {
_id: {
sellerId: "$items.sellerId"
},
"sumPrice": {
$sum: "$items.price"
}
}
},
{
"$group": {
"_id": 0,
"data": {
$addToSet: {
"sellerId": "$_id.sellerId",
"sumPrice": "$sumPrice"
}
}
}
}
])
Output
[
{
"_id": 0,
"data": [
{
"sellerId": ObjectId("61307abca667678553be81cb"),
"sumPrice": 4988
}
]
}
]
我在多个文档中有一个数组字段(包含对象),我想将这些数组合并为一个数组并按对象键对数组进行分组。我设法对数组进行了分组,但我不知道如何对数据进行分组。请参阅下面我尝试的代码
const test = await salesModel.aggregate([
{ $unwind: "$items" },
{
$group: {
_id: 0,
data: { $addToSet: '$items' }
},
}
])
查询结果:
{
_id: 0,
data: [
{
_id: 61435b3c0f773abaf77a367e,
price: 3000,
type: 'service',
sellerId: 61307abca667678553be81cb,
},
{
_id: 613115808330be818abaa613,
price: 788,
type: 'product',
sellerId: 61307abca667678553be81cb,
},
{
_id: 61307c1ea667676078be81cc,
price: 1200,
type: 'product',
sellerId: 61307abca667678553be81cb,
}
]
}
现在我想按对象键 data.sellerId
和总价
期望的输出:
{
data: [
{
sumPrice: 788,
sellerId: 613115808330be818abaa613,
},
{
sumPrice: 1200,
sellerId: 61307abca667678553be81cb,
}
]
}
使用当前查询和结果扩展:
$unwind
:解构数组字段为多个文档$group
:按data.sellerId
分组以对data.price
. 求和 ($group
: Group by 0 with$addToSet
将多个文档合并为一个文档 withdata
.
$sum
)
MongoDB aggregation query
db.collection.aggregate([
{
$unwind: "$data"
},
{
$group: {
_id: {
sellerId: "$data.sellerId"
},
"sumPrice": {
$sum: "$data.price"
}
}
},
{
"$group": {
"_id": 0,
"data": {
$addToSet: {
"sellerId": "$_id.sellerId",
"sumPrice": "$sumPrice"
}
}
}
}
])
Output
[
{
"_id": 0,
"data": [
{
"sellerId": ObjectId("61307abca667678553be81cb"),
"sumPrice": 4988
}
]
}
]
如果您想重新编写查询,这里是带有示例输入的查询。
Input
[
{
items: [
{
_id: ObjectId("61435b3c0f773abaf77a367e"),
price: 3000,
type: "service",
sellerId: ObjectId("61307abca667678553be81cb"),
},
{
_id: ObjectId("613115808330be818abaa613"),
price: 788,
type: "product",
sellerId: ObjectId("61307abca667678553be81cb"),
},
{
_id: ObjectId("61307c1ea667676078be81cc"),
price: 1200,
type: "product",
sellerId: ObjectId("61307abca667678553be81cb"),
}
]
}
]
Mongo aggregation query
db.collection.aggregate([
{
$unwind: "$items"
},
{
$group: {
_id: {
sellerId: "$items.sellerId"
},
"sumPrice": {
$sum: "$items.price"
}
}
},
{
"$group": {
"_id": 0,
"data": {
$addToSet: {
"sellerId": "$_id.sellerId",
"sumPrice": "$sumPrice"
}
}
}
}
])
Output
[
{
"_id": 0,
"data": [
{
"sellerId": ObjectId("61307abca667678553be81cb"),
"sumPrice": 4988
}
]
}
]