具有横截面平均值的面板回归

Panel regression with cross sectional averages

我正在估计面板回归模型,我需要将因变量和回归变量的横截面平均值添加到模型中。 我正在努力在 R 中实现横截面平均值。任何人都可以帮助我。

所以我在下面有一个面板回归代码 - 使用 plm 包。 我需要将变量 A、B、C 和 D 的横截面平均值添加到回归的右侧

library(plm)

panel_fe <- plm(A ~ B+ C + D, model = "fd", effect="individual", data = PanelS)

所以我最终的回归模型是这样的 A = B+ C+D + A_bar + B_bar + C_bar + D_bar,其中 A_bar、B_bar、C_bar、D_bar分别为A、B、C、D的截面平均值。

我的面板数据集如下,PanelS。

structure(list(Country = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
10L, 10L, 10L, 10L, 10L, 10L), .Label = c("CountryA", "CountryB", 
"CountryC", "CountryD", "CountryE", "CountryF", "CountryG", "CountryH", 
"CountryI", "CountryJ"), class = "factor"), Year = structure(c(1L, 
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 
16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 
10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 
17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 
18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 
5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 
19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 
7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 
20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 
14L, 15L, 16L, 17L, 18L, 19L, 20L), .Label = c("2000", "2001", 
"2002", "2003", "2004", "2005", "2006", "2007", "2008", "2009", 
"2010", "2011", "2012", "2013", "2014", "2015", "2016", "2017", 
"2018", "2019"), class = "factor"), A = c(0.051539, 0.064525, 
0.014292, 0.018774, 0.035449, 0.021988, 0.02396, 0.011415, 0.010358, 
-0.029607, -0.020427, -0.012734, 0.006683, 0.007373, -0.039712, 
-0.005499, 0.008682, 0.015326, 0.020524, 0.015101, 0.035355, 
0.031157, 0.023387, 0.024198, 0.035353, 0.053873, 0.038743, 0.042338, 
0.034935, 0.015377, 0.010599, 0.015154, 0.002919, 0.024291, 0.043819, 
0.015901, 0.01897, 0.027767, 0.015992, 0.041976, 0.011223, 0.006144, 
0.000778, 0.005873, 0.007194, -0.022017, -0.023338, -0.037765, 
-0.049356, 0.026135, 0.035633, 0.015691, -0.006196, -0.00025, 
0.001181, -0.001472, -0.009324, -0.022664, -0.022623, -0.019586, 
-0.012207, -0.004603, -0.013073, -0.010771, -0.009882, -0.014417, 
-0.031812, -0.043885, -0.050883, -0.039834, -0.020299, -0.000684, 
0.011216, 0.005419, 0.000939, -0.005508, 0.006266, -0.008077, 
-0.016137, -0.012681, 0.031612, 0.043729, 0.009314, 0.002734, 
-0.012284, 0.002403, 0.016807, 0.019995, 0.033096, 0.024383, 
0.010588, 0.019833, 0.031837, 0.03127, 0.029059, 0.020708, 0.019296, 
0.017787, 0.032074, 0.027125, 0.005673, 0.003698, -5.3e-05, 0.001794, 
-0.011977, -0.008686, -0.031588, -0.039411, -0.073931, -0.076715, 
-0.039171, -0.025797, -0.007637, 0.00345, 0.009101, 0.01674, 
-0.006968, -0.019178, -0.02438, -0.039663, 0.078313, 0.06707, 
0.062822, 0.050771, 0.041274, 0.043921, 0.046429, 0.039418, 0.034671, 
0.017356, 0.001054, 0.00414, 0.00226, 0.00275, 0.00085, 0.00495, 
0.001276, -0.001446, -0.005771, -0.007513, 0.053734, 0.038679, 
0.017375, 0.01438, 0.018403, 0.032943, 0.025539, 0.032463, 0.032267, 
0.034009, 0.018229, 0.008958, 0.010079, 0.00749, 0.000604, 0.001948, 
0.011782, 0.013253, 0.007898, 0.007546, 0.018052, -0.001123, 
-0.012597, -0.042292, -0.058516, -0.022736, -0.03841, -0.050843, 
-0.073979, -0.097242, -0.024712, 0.038037, 0.048685, -0.00624, 
0.075575, 0.044947, 0.097171, 0.086809, 0.079856, 0.068521, 0.008062, 
-0.00911, -0.010527, -4.3e-05, 0.002428, 0.004422, 0.008752, 
0.019602, 0.01724, 0.01965, -0.008816, 0.011466, 0.020956, 0.021873, 
0.021772, 0.024495, 0.021354, 0.015267, 0.018769, 0.016904), 
    C = c(0.75345, 0.70657, 0.645051, 0.510055, 0.433786, 0.35728, 
    0.265817, 0.208721, 0.163261, 0.130248, 0.136607, 0.153873, 
    0.152275, 0.166592, 0.170559, 0.27089, 0.259813, 0.292847, 
    0.253142, 0.222618, 0.56764082, 0.523543, 0.485083, 0.49081, 
    0.461501, 0.44156, 0.374122, 0.315494, 0.27346, 0.333132, 
    0.401818, 0.425879, 0.460709, 0.448942, 0.440456, 0.442703, 
    0.397737, 0.372338, 0.359446, 0.340254, 0.064305, 0.05107, 
    0.047682, 0.056584, 0.055981, 0.051134, 0.047025, 0.046318, 
    0.037655, 0.045041, 0.071989, 0.066074, 0.061057, 0.097641, 
    0.101621, 0.105545, 0.09996, 0.099131, 0.091119, 0.082012, 
    0.120817, 0.120871, 0.138383, 0.13023, 0.141247, 0.146088, 
    0.119133, 0.100396, 0.084592, 0.185873, 0.368416, 0.479167, 
    0.4367, 0.421837, 0.400428, 0.416259, 0.37072, 0.40398, 0.390126, 
    0.371126, 0.079576, 0.074647, 0.076712, 0.074295, 0.074504, 
    0.079053, 0.080224, 0.082991, 0.082006, 0.15357, 0.161465, 
    0.201522, 0.190049, 0.219974, 0.236873, 0.227428, 0.219862, 
    0.200938, 0.223426, 0.209529, 0.217219, 0.224867, 0.258694, 
    0.248207, 0.221093, 0.189452, 0.159052, 0.124236, 0.119492, 
    0.123362, 0.217807, 0.296186, 0.339882, 0.371345, 0.376212, 
    0.391509, 0.378059, 0.373931, 0.351043, 0.347354, 0.440547, 
    0.424547, 0.409236, 0.401795, 0.427482, 0.426416, 0.399297, 
    0.381117, 0.339041, 0.325607, 0.415314, 0.469047, 0.482712, 
    0.536225, 0.562292, 0.598259, 0.636417, 0.631764, 0.612668, 
    0.596271, 0.605061, 0.503479, 0.518971, 0.498057, 0.492731, 
    0.484527, 0.486885, 0.43596, 0.388967, 0.374978, 0.407324, 
    0.381025, 0.371731, 0.375149, 0.402248, 0.449982, 0.437387, 
    0.422554, 0.407331, 0.389125, 0.989067, 1.049344, 1.070812, 
    1.048631, 1.014561, 1.028734, 1.073949, 1.036117, 1.03103, 
    1.094155, 1.267447, 1.474942, 1.752192, 1.619444, 1.784347, 
    1.802256, 1.770079, 1.807951, 1.792139, 1.862386, 0.601394, 
    0.590658, 0.579365, 0.597035, 0.633089, 0.649877, 0.673465, 
    0.667047, 0.639942, 0.655222, 0.729901, 0.823816, 0.79801, 
    0.811354, 0.787169, 0.756694, 0.72207, 0.692768, 0.651024, 
    0.617801), B = c(0.147502302, 0.043680673, -0.212478849, 
    -0.266834333, -0.228099071, -0.199890362, -0.968175801, 1.047500546, 
    1.273127656, 1.227657506, -0.286068921, -1.356896168, -1.442625298, 
    -0.291748363, 2.029875219, 1.099611751, -1.112127832, -0.894025857, 
    0.103213651, 0.286801553, 0.756833023, 0.591945192, 0.525259532, 
    0.466656359, 0.706692697, -2.361722697, -2.777257989, -4.097114222, 
    -4.564987155, 2.317853991, 3.44030537, 3.034469093, 5.845290721, 
    0.403542521, 0.128582254, 0.817094156, -0.886707561, -2.998573025, 
    -0.491794488, -0.856367773, 0.023343476, -0.209503364, -0.084839186, 
    -0.146285026, -0.256672799, -0.093852713, 0.145824486, 0.434606031, 
    0.966980327, 0.67904687, -0.292659443, -0.487763914, -0.084930583, 
    -0.32722087, -0.442172133, -0.168366978, -0.186469629, 0.046322287, 
    0.181126569, 0.303486593, 0.171541123, -0.348150815, -0.407466419, 
    -0.624622679, -0.354132366, -0.15050691, 0.700892294, 0.67692383, 
    1.014111655, 0.862019536, 0.395600738, -0.256706715, -0.542246369, 
    -0.539422399, -0.405088653, -0.247954994, -0.497333992, -0.010723655, 
    0.393516751, 0.169750037, -0.581903347, -0.730163914, 0.351894514, 
    0.629568917, 0.882078894, 0.760041333, -0.564317727, -0.57799292, 
    -0.433736512, 0.513350369, 0.55464973, -0.224497194, -0.074326596, 
    -0.123301819, -0.432013928, -0.25316664, -0.374406673, 0.116449941, 
    0.308969388, 0.252824183, 2.398228162, -0.033362631, -1.681378615, 
    -3.655293426, -2.793256764, -3.636310622, 0.149490332, 3.951131246, 
    7.177449077, 4.831325877, 2.050070679, 1.314471427, -1.687424783, 
    -3.796189127, -3.329685346, -1.695252718, -3.010416797, -2.414597902, 
    1.199960369, 4.661041564, 0.531518012, -1.384184059, -0.64216453, 
    -0.13206166, 0.249287935, -0.153010531, -0.987952985, -1.71711917, 
    -0.678751076, 0.890062065, 1.663691535, 1.883735194, 2.171029985, 
    2.383501603, 1.490313839, -0.732542129, -0.291797363, -1.655272704, 
    -1.613245217, -1.275038743, -0.789256935, -3.589249982, 0.502475039, 
    1.840081099, 1.141218417, 3.130100399, 3.94751837, 0.97811035, 
    0.013586974, -3.245960526, -2.068241886, -1.82476664, -1.481654499, 
    0.37039449, -1.516414277, -1.722381744, 0.683458083, 0.153189319, 
    3.410781995, 0.067011953, -3.09418792, -4.09753755, -4.682167411, 
    -1.333607727, 2.505605899, -4.332639317, -2.190945016, 4.048457741, 
    11.60535564, 13.61047901, 5.145259686, -0.712611552, -3.385649938, 
    7.214394614, -10.34401695, -1.841542179, -6.437949187, -4.545422837, 
    -0.012548047, 2.881273043, 3.227611639, 10.96399365, 16.38843255, 
    14.72001327, -13.84595255, -10.51570643, -13.59695535, -36.70577424, 
    -12.07070647, 12.51742535, 52.88207865, 9.143152612, -7.818895359, 
    -15.57456939, -21.31957866, -23.55720863, -5.574415019, 5.783084584, 
    12.02189272, 22.93207708), D = c(0.77780751, 0.793229898, 
    0.80623893, 0.821155065, 0.836880111, 0.854312944, 0.873660631, 
    0.890537317, 0.907536298, 0.912375095, 0.929637942, 0.946439284, 
    0.965000087, 0.97726773, 0.986870808, 1, 1.019208507, 1.037842597, 
    1.054711181, 1.072171599, 0.534008473, 0.566583199, 0.58762954, 
    0.601043497, 0.63362178, 0.673913677, 0.719447102, 0.799187909, 
    0.864173776, 0.899162389, 0.909465125, 0.96350569, 0.978220642, 
    0.971679886, 0.976158221, 1, 1.025374896, 1.065804414, 1.108567186, 
    1.166769344, 0.588726028, 0.64526073, 0.733094431, 0.718268082, 
    0.746291144, 0.799900392, 0.846050389, 0.894179583, 1.015232882, 
    0.982856394, 1.012948099, 1.041332642, 1.032947106, 1.013566583, 
    0.980944689, 1, 1.020576612, 1.061740647, 1.117831183, 1.159906251, 
    0.750587042, 0.769670674, 0.790024355, 0.801712216, 0.817505148, 
    0.83991247, 0.856517319, 0.878345181, 0.914006005, 0.920044857, 
    0.949573071, 0.955207703, 0.978810398, 0.985618398, 0.996205139, 
    1, 1.004364708, 1.017159213, 1.021013703, 1.02682649, 0.825278825, 
    0.836048671, 0.847570474, 0.858769029, 0.86834942, 0.871868036, 
    0.875331803, 0.890827568, 0.898928134, 0.915485416, 0.921392822, 
    0.931246968, 0.945182975, 0.963702812, 0.981800571, 1, 1.013277522, 
    1.026999204, 1.044176589, 1.067069774, 0.490666665, 0.523850087, 
    0.54906662, 0.570457925, 0.597126217, 0.632406036, 0.689467717, 
    0.775073059, 0.828560075, 0.827109078, 0.842215091, 0.887572897, 
    0.923280339, 0.960610381, 0.988936452, 1, 1.022699304, 1.054533263, 
    1.098615084, 1.134067127, 0.757140805, 0.809228408, 0.851488047, 
    0.884918505, 0.889385715, 0.916751643, 0.948479832, 0.960072842, 
    0.956196673, 0.911566837, 0.884542463, 0.89644222, 0.917048164, 
    0.929279352, 0.929337342, 1, 1.010128912, 1.026719845, 1.029923385, 
    1.062349178, 0.786853444, 0.804351028, 0.831286834, 0.859995963, 
    0.886334727, 0.906191485, 0.937863282, 0.969963165, 1.012104032, 
    1.038112793, 1.036283847, 1.046222, 1.043339336, 1.02279939, 
    1.002888566, 1, 0.994233243, 0.998082845, 0.997049083, 0.998951287, 
    0.740171055, 0.770579402, 0.802054487, 0.833603662, 0.865965514, 
    0.90147914, 0.937354271, 0.969378485, 0.99123068, 0.992657113, 
    0.994179737, 0.993983379, 0.992844694, 0.99680058, 0.994574042, 
    1, 1.003228988, 1.016266499, 1.028341184, 1.04261954, 0.801617134, 
    0.817716283, 0.834621959, 0.850140657, 0.863935678, 0.880664424, 
    0.899645623, 0.9226463, 0.944486016, 0.945115307, 0.95522518, 
    0.964280334, 0.975483583, 0.983073825, 0.988745617, 1, 1.005225593, 
    1.010468623, 1.020086873, 1.032605559)), row.names = c("CountryA-2000", 
"CountryA-2001", "CountryA-2002", "CountryA-2003", "CountryA-2004", 
"CountryA-2005", "CountryA-2006", "CountryA-2007", "CountryA-2008", 
"CountryA-2009", "CountryA-2010", "CountryA-2011", "CountryA-2012", 
"CountryA-2013", "CountryA-2014", "CountryA-2015", "CountryA-2016", 
"CountryA-2017", "CountryA-2018", "CountryA-2019", "CountryB-2000", 
"CountryB-2001", "CountryB-2002", "CountryB-2003", "CountryB-2004", 
"CountryB-2005", "CountryB-2006", "CountryB-2007", "CountryB-2008", 
"CountryB-2009", "CountryB-2010", "CountryB-2011", "CountryB-2012", 
"CountryB-2013", "CountryB-2014", "CountryB-2015", "CountryB-2016", 
"CountryB-2017", "CountryB-2018", "CountryB-2019", "CountryC-2000", 
"CountryC-2001", "CountryC-2002", "CountryC-2003", "CountryC-2004", 
"CountryC-2005", "CountryC-2006", "CountryC-2007", "CountryC-2008", 
"CountryC-2009", "CountryC-2010", "CountryC-2011", "CountryC-2012", 
"CountryC-2013", "CountryC-2014", "CountryC-2015", "CountryC-2016", 
"CountryC-2017", "CountryC-2018", "CountryC-2019", "CountryD-2000", 
"CountryD-2001", "CountryD-2002", "CountryD-2003", "CountryD-2004", 
"CountryD-2005", "CountryD-2006", "CountryD-2007", "CountryD-2008", 
"CountryD-2009", "CountryD-2010", "CountryD-2011", "CountryD-2012", 
"CountryD-2013", "CountryD-2014", "CountryD-2015", "CountryD-2016", 
"CountryD-2017", "CountryD-2018", "CountryD-2019", "CountryE-2000", 
"CountryE-2001", "CountryE-2002", "CountryE-2003", "CountryE-2004", 
"CountryE-2005", "CountryE-2006", "CountryE-2007", "CountryE-2008", 
"CountryE-2009", "CountryE-2010", "CountryE-2011", "CountryE-2012", 
"CountryE-2013", "CountryE-2014", "CountryE-2015", "CountryE-2016", 
"CountryE-2017", "CountryE-2018", "CountryE-2019", "CountryF-2000", 
"CountryF-2001", "CountryF-2002", "CountryF-2003", "CountryF-2004", 
"CountryF-2005", "CountryF-2006", "CountryF-2007", "CountryF-2008", 
"CountryF-2009", "CountryF-2010", "CountryF-2011", "CountryF-2012", 
"CountryF-2013", "CountryF-2014", "CountryF-2015", "CountryF-2016", 
"CountryF-2017", "CountryF-2018", "CountryF-2019", "CountryG-2000", 
"CountryG-2001", "CountryG-2002", "CountryG-2003", "CountryG-2004", 
"CountryG-2005", "CountryG-2006", "CountryG-2007", "CountryG-2008", 
"CountryG-2009", "CountryG-2010", "CountryG-2011", "CountryG-2012", 
"CountryG-2013", "CountryG-2014", "CountryG-2015", "CountryG-2016", 
"CountryG-2017", "CountryG-2018", "CountryG-2019", "CountryH-2000", 
"CountryH-2001", "CountryH-2002", "CountryH-2003", "CountryH-2004", 
"CountryH-2005", "CountryH-2006", "CountryH-2007", "CountryH-2008", 
"CountryH-2009", "CountryH-2010", "CountryH-2011", "CountryH-2012", 
"CountryH-2013", "CountryH-2014", "CountryH-2015", "CountryH-2016", 
"CountryH-2017", "CountryH-2018", "CountryH-2019", "CountryI-2000", 
"CountryI-2001", "CountryI-2002", "CountryI-2003", "CountryI-2004", 
"CountryI-2005", "CountryI-2006", "CountryI-2007", "CountryI-2008", 
"CountryI-2009", "CountryI-2010", "CountryI-2011", "CountryI-2012", 
"CountryI-2013", "CountryI-2014", "CountryI-2015", "CountryI-2016", 
"CountryI-2017", "CountryI-2018", "CountryI-2019", "CountryJ-2000", 
"CountryJ-2001", "CountryJ-2002", "CountryJ-2003", "CountryJ-2004", 
"CountryJ-2005", "CountryJ-2006", "CountryJ-2007", "CountryJ-2008", 
"CountryJ-2009", "CountryJ-2010", "CountryJ-2011", "CountryJ-2012", 
"CountryJ-2013", "CountryJ-2014", "CountryJ-2015", "CountryJ-2016", 
"CountryJ-2017", "CountryJ-2018", "CountryJ-2019"), class = c("pdata.frame", 
"data.frame"), index = structure(list(Country = structure(c(1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L), .Label = c("CountryA", 
"CountryB", "CountryC", "CountryD", "CountryE", "CountryF", "CountryG", 
"CountryH", "CountryI", "CountryJ"), class = "factor"), Year = structure(c(1L, 
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 
16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 
10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 
17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 
18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 
5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 
19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 
7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 
20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 
14L, 15L, 16L, 17L, 18L, 19L, 20L), .Label = c("2000", "2001", 
"2002", "2003", "2004", "2005", "2006", "2007", "2008", "2009", 
"2010", "2011", "2012", "2013", "2014", "2015", "2016", "2017", 
"2018", "2019"), class = "factor")), class = c("pindex", "data.frame"
), row.names = c(NA, 200L)))

您可以使用包 plm 中的函数 Between 来计算横截面平均值并将它们添加到您的数据中:

library(plm)
# PanelS is a pdata.frame (otherwise use pdata.frame(your_data, index))
PanelS$A_bar <- Between(PanelS$A)
PanelS$B_bar <- Between(PanelS$B)
PanelS$C_bar <- Between(PanelS$C)
PanelS$D_bar <- Between(PanelS$D)

mod <- plm(A ~ B + C + D + A_bar + B_bar + C_bar + D_bar, model = "pooling", effect="individual", data = PanelS)

summary(mod)
# Pooling Model
# 
# Call:
# plm(formula = A ~ B + C + D + A_bar + B_bar + C_bar + D_bar, 
#     data = PanelS, effect = "individual", model = "pooling")
# 
# Balanced Panel: n = 10, T = 20, N = 200
# 
# Residuals:
#        Min.     1st Qu.      Median     3rd Qu.        Max. 
# -0.06143690 -0.01311792  0.00070253  0.01186605  0.05107105 
# 
# Coefficients:
#                         Estimate           Std. Error  t-value              Pr(>|t|)    
# (Intercept) -0.00000000000001042  0.03313743211380626   0.0000              1.000000    
# B           -0.00076930351859426  0.00020566635571130  -3.7405              0.000242 ***
# C            0.10827039012266901  0.00949296134830719  11.4053 < 0.00000000000000022 ***
# D           -0.04222788490989914  0.01136058813979121  -3.7171              0.000264 ***
# A_bar        0.99999999999911215  0.09632471140222754  10.3816 < 0.00000000000000022 ***
# C_bar       -0.10827039012256123  0.01033406661607372 -10.4770 < 0.00000000000000022 ***
# D_bar        0.04222788490990802  0.03874710199411169   1.0898              0.277145    
# ---
# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# 
# Total Sum of Squares:    0.17549
# Residual Sum of Squares: 0.07128
# R-Squared:      0.59382
# Adj. R-Squared: 0.58119
# F-statistic: 47.0268 on 6 and 193 DF, p-value: < 0.000000000000000222

请注意,您似乎想要估计固定效应模型,但您的估计 model = "fd" 可以估计一阶差分模型。另请注意,横截面平均值将退出固定效应模型的估计。