ggplot2 并使用图例更改 xlabel 和 ylabel 名称

ggplot2 and change xlabel and ylabel names with also legend

R 脚本的结果下方:

这个 R 代码片段是:

as.data.frame(y3) %>%
mutate(row = row_number()) %>%     # add row to simplify next step
pivot_longer(-row) %>%             # reshape long      
ggplot(aes(value, color = name)) + # map x to value, color to name     
geom_density() 

如何更改 xlabel(值)和 ylabel(密度)的名称以及图例 (v1, v2, v3, v4, v5)?

更新 1

通过使用@Park 的代码片段,我没有绘制任何曲线:

as.data.frame(y3) %>%
  mutate(row = row_number()) %>%     # add row to simplify next step
  pivot_longer(-row) %>%             # reshape long
  mutate(name = recode(name, V1="z = 0.9595", V2="z = 1.087", V3="z = 1.2395", V4="z = 1.45", V5="z = 1.688")) %>%
  ggplot(aes(value, color = name)) + # map x to value, color to name
  geom_density() +
  xlab("Distribution of Ratio $b_{sp}/b_{ph}$ or each redshift") +
  ylab("Number of occurences")

结果:

我也尝试过使用 Latex 格式的下标:$b_{sp}/b_{ph}$ 但没有成功。

您可以尝试 xlabylabscale_color_manual

as.data.frame(y3) %>%
  mutate(row = row_number()) %>%     # add row to simplify next step
  pivot_longer(-row) %>%             # reshape long      
  ggplot(aes(value, color = name)) + # map x to value, color to name     
  geom_density() +
  xlab("text") +
  ylab("text") +
  scale_color_manual(labels = c("a", "b", "c", "d", "e"))

剧情前重新编码

as.data.frame(y3) %>%
  mutate(row = row_number()) %>%     # add row to simplify next step
  pivot_longer(-row) %>%             # reshape long      
  mutate(name = recode(name, V1 = "a", V2 = "b", V3 = "c", V4 = "d", V5 = "e")) %>%
  ggplot(aes(value, color = name)) + # map x to value, color to name     
  geom_density() +
  xlab("text") +
  ylab("text") 

使用Array_total_WITH_Shot_Noise数据

my_data <- read.delim("D:/Prac/Array_total_WITH_Shot_Noise.txt", header = FALSE, sep = " ")
array_2D <- array(my_data)
z_ph <- c(0.9595, 1.087, 1.2395, 1.45, 1.688)
b_sp <- c(1.42904922, 1.52601862, 1.63866958, 1.78259615, 1.91956918)
b_ph <- c(sqrt(1+z_ph))
ratio_squared <- (b_sp/b_ph)^2

nRed <- 5
nRow <- NROW(my_data)

nSample_var <- 1000000
nSample_mc <- 1000

Cl<-my_data[,2:length(my_data)]#suppose cl=var(alm)
Cl_sp <- array(0, dim=c(nRow,nRed))
Cl_ph <- array(0, dim=c(nRow,nRed))
length(Cl)
for (i in 1:length(Cl)) {
  #(shape/rate) convention : 
  Cl_sp[,i] <-(Cl[, i] * ratio_squared[i])
  Cl_ph[,i] <- (Cl[, i])
}
L <- array_2D[,1]
L <- 2*(array_2D[,1])+1

# Weighted sum of Chi squared distribution
y3_1<-array(0,dim=c(nSample_var,nRed));y3_2<-array(0,dim=c(nSample_var,nRed));y3<-array(0,dim=c(nSample_var,nRed));
  for (i in 1:nRed) {
    for (j in 1:nRow) {
      # Try to summing all the random variable
      y3_1[,i] <- y3_1[,i] + Cl_sp[j,i] * rchisq(nSample_var,df=L[j])
      y3_2[,i] <- y3_2[,i] + Cl_ph[j,i] * rchisq(nSample_var,df=L[j])
    }
    y3[,i] <- y3_1[,i]/y3_2[,i]
  }
as.data.frame(y3) %>%
  mutate(row = row_number()) %>%     # add row to simplify next step
  pivot_longer(-row) %>%             # reshape long
  mutate(name = recode(name, V1="z = 0.9595", V2="z = 1.087", V3="z = 1.2395", V4="z = 1.45", V5="z = 1.688")) %>%
  ggplot(aes(value, color = name)) + # map x to value, color to name
  geom_density() +
  xlab(TeX("Distribution of Ratio $b_{sp}/b_{ph}$ or each redshift")) +
  ylab("Number of occurences")