无法使用 ggplot2 和 ggpmisc 获得两位小数的 R2 值

Can't get R2 values in two decimal using ggplot2 and ggpmisc

很抱歉,在这里寻求帮助时,我不知道如何制作可重现的示例。因此,我提供以下代码和数据; <350 KB 这里(数据:https://easyupload.io/1r5xuo),如果你能看看。

我的问题是:我想要 R2 的两位十进制值(如附图所示),我无法使用 ggpmisc 的 stat_fit_glance()即使我使用了 digits=2 功能,但它只显示一个(R2=0.7 和 R2=0.9),可能是因为小数点后一位为零(见图)。

但是,我希望它们是 R2=0.70 和 R2=0.90。

谁能帮我解决这个问题。

library(ggplot2)
library(ggpmisc)
library(dplyr)
library(openxlsx)
library(ggpubr)

# data
data_all      <- read.xlsx("./DJFMA_new_files/djfma_hourly_clear_overcast_scatter.xlsx")
colnames(data_all)[1] <- "h"
colnames(data_all)[2] <- "le"
colnames(data_all)[3] <- "ta_ts"
colnames(data_all)[4] <- "q_qRS"

# filter
data_clear <- data_all %>%
  filter(type == "Clear-sky")
data_over <- data_all %>%
  filter(type == "Overcast")

# Formula
formula1 <- y ~ x

# Plot
ggplot(data=data_all, aes(x=ta_ts, y=h, color=type)) +
  geom_hline(yintercept=0, linetype="dashed", color = "grey50", size=.3) +
  geom_vline(xintercept=0, linetype="dashed", color = "grey50", size=.3) +
  geom_point(alpha=0.3, size=1.5, shape=20) +
  labs(x=NULL,
       y=expression("H"~ "[W" ~ m^-2~"]")) +
  scale_colour_manual("",values = c("Overcast"="#51806a","Clear-sky"="#DD3C51")) +
  theme_bw() +
  theme(legend.position = c(.25, .85),
        legend.background = element_rect(fill = "transparent"),
        axis.ticks.length=unit(-0.12, "cm"),
        axis.text.y = element_text(margin=margin(5,7,5,5,"pt")),
        axis.text.x = element_text(margin=margin(7,5,5,5,"pt"))) +
  stat_fit_glance(method = 'lm',
                  method.args = list(formula = formula1),
                  #geom = 'text',
                  label.y = "bottom",
                  label.x = "right",
                  aes(label = paste("R^2 ==", round(..r.squared.., digits = 2),
                                    sep = "~")),
                  parse=TRUE)

样图

我们可以用 format 包裹 round 并使用简单的 paste0 来组合它们。这里要记住的一件事是 format 的输出类型是 character.

示例:

> format(round(0.70, 2), nsmall = 2)
[1] "0.70"
> typeof(format(round(0.70, 2), nsmall = 2))
[1] "character"

解法(只有最后的情节):

ggplot(data=data_all, aes(x=ta_ts, y=h, color=type)) +
  geom_hline(yintercept=0, linetype="dashed", color = "grey50", size=.3) +
  geom_vline(xintercept=0, linetype="dashed", color = "grey50", size=.3) +
  geom_point(alpha=0.3, size=1.5, shape=20) +
  labs(x=NULL,
       y=expression("H"~ "[W" ~ m^-2~"]")) +
  scale_colour_manual("",values = c("Overcast"="#51806a","Clear-sky"="#DD3C51")) +
  theme_bw() +
  theme(legend.position = c(.25, .85),
        legend.background = element_rect(fill = "transparent"),
        axis.ticks.length=unit(-0.12, "cm"),
        axis.text.y = element_text(margin=margin(5,7,5,5,"pt")),
        axis.text.x = element_text(margin=margin(7,5,5,5,"pt"))) +
  stat_fit_glance(method = 'lm',
                  method.args = list(formula = formula1),
                  #geom = 'text',
                  label.y = "bottom",
                  label.x = "right",
                  aes(label = paste0("R^2 =", format(round(..r.squared.., digits = 2), nsmall = 2))))

使用stat_poly_eq()可以轻松调整位数。这是使用来自 CRAN 的 'ggpmisc' 的当前版本。我最近更新了代码,以便不删除尾随零。

library(ggpmisc)
library(dplyr)
library(openxlsx)

# data
data_all   <- read.xlsx("./R bits and pieces/djfma_hourly_clear_overcast_scatter.xlsx")
colnames(data_all)[1] <- "h"
colnames(data_all)[2] <- "le"
colnames(data_all)[3] <- "ta_ts"
colnames(data_all)[4] <- "q_qRS"

# filter
data_clear <- data_all %>%
  filter(type == "Clear-sky")
data_over <- data_all %>%
  filter(type == "Overcast")

# Plot
ggplot(data=data_all, aes(x=ta_ts, y=h, color=type)) +
  geom_hline(yintercept=0, linetype="dashed", color = "grey50", size=.3) +
  geom_vline(xintercept=0, linetype="dashed", color = "grey50", size=.3) +
  geom_point(alpha=0.3, size=1.5, shape=20) +
  labs(x=NULL,
       y=expression("H"~ "[W" ~ m^-2~"]")) +
  scale_colour_manual("",values = c("Overcast"="#51806a","Clear-sky"="#DD3C51")) +
  theme_bw() +
  theme(legend.position = c(.25, .85),
        legend.background = element_rect(fill = "transparent"),
        axis.ticks.length=unit(-0.12, "cm"),
        axis.text.y = element_text(margin=margin(5,7,5,5,"pt")),
        axis.text.x = element_text(margin=margin(7,5,5,5,"pt"))) +
  stat_poly_eq(label.y = "bottom",
               label.x = "right",
               rr.digits = 2)