有没有办法在 Python 中创建相关变量来设置这些变量的标准差?
Is there a way to create correlated variables in Python setting the standard deviation of these variables?
我想为四个变量创建假数据:身高、体重、年龄和收入。
我用过这个脚本:
cov_matrix = [[1, 0.7, 0, 0],
[0.7, 1, 0, 0],
[0, 0, 1, 0.4],
[0, 0, 0.4, 1]]
correlated = np.random.multivariate_normal([165, 65, 30, 15000], cov_matrix, size=250)
data = pd.DataFrame({
"Height": correlated[:, 0],
"Weight": correlated[:, 1],
"Age": correlated[:, 2],
"Income": correlated[:, 3]
})
但是结果还不够好,四个变量的标准差(sd)大约为1,我希望我的数据有更多的离散度。例如,变量“Height”的 sd 为 30。
有没有可能在Python中实现这个?
要获得每个特征的方差,只需将这些值放在协方差矩阵的对角线上即可。但是,需要缩放非对角线元素以解决特征差异。
a1 = 0.7*np.sqrt(30*12)
a2 = 0.4*np.sqrt(19*50)
cov_matrix = np.array([[30.0, a1, 0.0, 0.0],
[ a1, 12.0, 0.0, 0.0],
[ 0.0, 0.0, 19.0, a2],
[ 0.0, 0.0, a2, 50.0]])
correlated = np.random.multivariate_normal([165, 65, 30, 15000], cov_matrix, size=1000)
print(correlated.var(axis=0))
print(np.corrcoef(correlated.T))
差异:
[28.02834149 11.14644597 18.68960579 49.46234297]
特征间的互相关系数矩阵:
[[ 1. 0.67359842 -0.02016119 -0.02607946]
[ 0.67359842 1. -0.00338224 -0.01021924]
[-0.02016119 -0.00338224 1. 0.37187791]
[-0.02607946 -0.01021924 0.37187791 1. ]]
或者,根据原始协方差矩阵生成数据,然后缩放和平移每个特征以获得所需的均值和标准差。这将保留最初预期的相关系数。请注意,在 缩放后添加平均值 ,否则缩放将改变平均值。
# generate correlated features with zero-mean and unit variance
correlated = np.random.multivariate_normal(np.zeros(4), cov_matrix, size=1000)
# multiply by the desired standard deviation to scale the data and add the mean
correlated = correlated.dot(np.diag(np.sqrt([30.0, 12.0, 19.0, 50.]))) + np.array([165, 65, 30, 15000])
我想为四个变量创建假数据:身高、体重、年龄和收入。
我用过这个脚本:
cov_matrix = [[1, 0.7, 0, 0],
[0.7, 1, 0, 0],
[0, 0, 1, 0.4],
[0, 0, 0.4, 1]]
correlated = np.random.multivariate_normal([165, 65, 30, 15000], cov_matrix, size=250)
data = pd.DataFrame({
"Height": correlated[:, 0],
"Weight": correlated[:, 1],
"Age": correlated[:, 2],
"Income": correlated[:, 3]
})
但是结果还不够好,四个变量的标准差(sd)大约为1,我希望我的数据有更多的离散度。例如,变量“Height”的 sd 为 30。
有没有可能在Python中实现这个?
要获得每个特征的方差,只需将这些值放在协方差矩阵的对角线上即可。但是,需要缩放非对角线元素以解决特征差异。
a1 = 0.7*np.sqrt(30*12)
a2 = 0.4*np.sqrt(19*50)
cov_matrix = np.array([[30.0, a1, 0.0, 0.0],
[ a1, 12.0, 0.0, 0.0],
[ 0.0, 0.0, 19.0, a2],
[ 0.0, 0.0, a2, 50.0]])
correlated = np.random.multivariate_normal([165, 65, 30, 15000], cov_matrix, size=1000)
print(correlated.var(axis=0))
print(np.corrcoef(correlated.T))
差异:
[28.02834149 11.14644597 18.68960579 49.46234297]
特征间的互相关系数矩阵:
[[ 1. 0.67359842 -0.02016119 -0.02607946]
[ 0.67359842 1. -0.00338224 -0.01021924]
[-0.02016119 -0.00338224 1. 0.37187791]
[-0.02607946 -0.01021924 0.37187791 1. ]]
或者,根据原始协方差矩阵生成数据,然后缩放和平移每个特征以获得所需的均值和标准差。这将保留最初预期的相关系数。请注意,在 缩放后添加平均值 ,否则缩放将改变平均值。
# generate correlated features with zero-mean and unit variance
correlated = np.random.multivariate_normal(np.zeros(4), cov_matrix, size=1000)
# multiply by the desired standard deviation to scale the data and add the mean
correlated = correlated.dot(np.diag(np.sqrt([30.0, 12.0, 19.0, 50.]))) + np.array([165, 65, 30, 15000])