Abline 命令没有显示回归线?
Abline command is not showing a regression line?
我是 R 编程的新手,我正在尝试为该数据集绘制回归线,但它似乎不起作用。
我完全按照我的教授使用的方法进行操作,但它似乎不起作用。我还将 abline 命令与 abline(lm(batters$EMH~batters$TB))
互换,结果相似。
这是我的代码:
batters<-read.table(header=TRUE, text="
X AVG EBH TB OPS K.to.BB.Ratio
1 LeMahieu 0.327 61 312 0.893 1.95
2 Urshela 0.314 55 236 0.889 3.48
3 Torres 0.278 64 292 0.871 2.64
4 Judge 0.272 46 204 0.921 2.21
5 Sanchez 0.232 47 208 0.841 3.13
6 Wong 0.285 40 202 0.784 1.76
7 Molina 0.270 34 167 0.711 2.52
8 Goldschmidt 0.260 60 284 0.821 2.13
9 Ozuna 0.243 53 230 0.804 1.84
10 DeJong 0.233 62 259 0.762 2.39
11 Altuve 0.298 61 275 0.903 1.98
12 Bregman 0.296 80 328 1.015 0.69
13 Springer 0.292 62 283 0.974 1.69
14 Reddick 0.275 36 205 0.728 1.83
15 Chirinos 0.238 40 162 0.791 2.45
16 Bellinger 0.305 84 351 1.035 1.14
17 Turner 0.290 51 244 0.881 1.72
18 Seager 0.272 64 236 0.817 2.23
19 Taylor 0.262 45 169 0.794 3.11
20 Muncy 0.251 58 251 0.889 1.65
21 Meadows 0.291 69 296 0.922 2.43
22 Garcia 0.282 47 227 0.796 4.03
23 Pham 0.273 56 255 0.818 1.52
24 Choi 0.261 41 188 0.822 1.69
25 Adames 0.254 46 222 0.735 3.32
26 Yelich 0.329 76 328 1.101 1.48
27 Braun 0.285 55 232 0.849 3.09
28 Moustakas 0.254 66 270 0.845 1.85
29 Grandal 0.246 56 240 0.848 1.28
30 Arcia 0.223 32 173 0.633 2.53")
plot(batters$EBH,batters$TB,main="Attribute Pairing 5",xlab="EBH",ylab="TB")
lm(formula = batters$EBH~batters$TB)
#Call:
#lm(formula = batters$EBH ~ batters$TB)
#Coefficients:
#(Intercept) batters$TB
# -4.1275 0.2416
lin_model_1<-lm(formula = batters$EBH~batters$TB)
summary(lin_model_1)
abline(-4.12752, 0.24162)
我为混乱的编码道歉,这是为了 class。
您的公式在 lm()
函数调用中是反向的。因变量在“~”的左边。
在您的图中,y 轴(因变量)是 TB,但在线性回归模型中,它被定义为自变量。因此,为了使线性回归模型起作用,需要交换 EBH 和 TB。
plot(batters$EBH,batters$TB,main="Attribute Pairing 5",xlab="EBH",ylab="TB")
model <-lm(formula = batters$TB ~batters$EBH)
model
Call: lm(formula = batters$TB ~ batters$EBH)
Coefficients: (Intercept) batters$EBH
46.510 3.603
abline(model)
#or
abline (46.51, 3.60)
此外,如果将“模型”传递给 abline
,则可以避免使用 abline
指定斜率和截距的需要
我是 R 编程的新手,我正在尝试为该数据集绘制回归线,但它似乎不起作用。
我完全按照我的教授使用的方法进行操作,但它似乎不起作用。我还将 abline 命令与 abline(lm(batters$EMH~batters$TB))
互换,结果相似。
这是我的代码:
batters<-read.table(header=TRUE, text="
X AVG EBH TB OPS K.to.BB.Ratio
1 LeMahieu 0.327 61 312 0.893 1.95
2 Urshela 0.314 55 236 0.889 3.48
3 Torres 0.278 64 292 0.871 2.64
4 Judge 0.272 46 204 0.921 2.21
5 Sanchez 0.232 47 208 0.841 3.13
6 Wong 0.285 40 202 0.784 1.76
7 Molina 0.270 34 167 0.711 2.52
8 Goldschmidt 0.260 60 284 0.821 2.13
9 Ozuna 0.243 53 230 0.804 1.84
10 DeJong 0.233 62 259 0.762 2.39
11 Altuve 0.298 61 275 0.903 1.98
12 Bregman 0.296 80 328 1.015 0.69
13 Springer 0.292 62 283 0.974 1.69
14 Reddick 0.275 36 205 0.728 1.83
15 Chirinos 0.238 40 162 0.791 2.45
16 Bellinger 0.305 84 351 1.035 1.14
17 Turner 0.290 51 244 0.881 1.72
18 Seager 0.272 64 236 0.817 2.23
19 Taylor 0.262 45 169 0.794 3.11
20 Muncy 0.251 58 251 0.889 1.65
21 Meadows 0.291 69 296 0.922 2.43
22 Garcia 0.282 47 227 0.796 4.03
23 Pham 0.273 56 255 0.818 1.52
24 Choi 0.261 41 188 0.822 1.69
25 Adames 0.254 46 222 0.735 3.32
26 Yelich 0.329 76 328 1.101 1.48
27 Braun 0.285 55 232 0.849 3.09
28 Moustakas 0.254 66 270 0.845 1.85
29 Grandal 0.246 56 240 0.848 1.28
30 Arcia 0.223 32 173 0.633 2.53")
plot(batters$EBH,batters$TB,main="Attribute Pairing 5",xlab="EBH",ylab="TB")
lm(formula = batters$EBH~batters$TB)
#Call:
#lm(formula = batters$EBH ~ batters$TB)
#Coefficients:
#(Intercept) batters$TB
# -4.1275 0.2416
lin_model_1<-lm(formula = batters$EBH~batters$TB)
summary(lin_model_1)
abline(-4.12752, 0.24162)
我为混乱的编码道歉,这是为了 class。
您的公式在 lm()
函数调用中是反向的。因变量在“~”的左边。
在您的图中,y 轴(因变量)是 TB,但在线性回归模型中,它被定义为自变量。因此,为了使线性回归模型起作用,需要交换 EBH 和 TB。
plot(batters$EBH,batters$TB,main="Attribute Pairing 5",xlab="EBH",ylab="TB")
model <-lm(formula = batters$TB ~batters$EBH)
model
Call: lm(formula = batters$TB ~ batters$EBH)
Coefficients: (Intercept) batters$EBH
46.510 3.603
abline(model)
#or
abline (46.51, 3.60)
此外,如果将“模型”传递给 abline
,则可以避免使用 abline