Choropleth Plotly Graph 未出现在 Dash 上

Choropleth Plotly Graph not appearing on Dash

我有一个包含各种状态的 csv 文件,以及它们在某些特定日期的分数。它在 VSCode Notebook 中正确绘制,但当我尝试在 Dash 上显示它时,默认地图出现但没有颜色编码。我试过更改数据集甚至显示选项,但它仍然是一样的。还有其他人遇到这个问题吗?

我在下面附上我的完整 Dash 代码以供参考

#importing libraries
import dash
from dash import Dash, dcc, html, Input, Output
import plotly.express as px
import pandas as pd


app = Dash(__name__)

#-- Import and clean data (importing csv into pandas)
df = pd.read_csv("C:\Data Science\Jupyter_Workspace\Twitter_Sentiment\Data\JSONLs\final_df.csv")
#print(df[:5]) #printing out a sample to verify if it's correct or not

# Importing the GeoJSON File
import geojson
with open("C:\Data Science\Jupyter_Workspace\Twitter_Sentiment\Dash Deployment\states_india.geojson") as f:
    india_states = geojson.load(f)


# ------------------------------------------------------------------------------
# App layout
app.layout = html.Div([

    html.H1("Sentiment Timeline for Covid-19 in India 2021-22", style={'text-align': 'center'}),

    dcc.Dropdown(id="selected_date",
                 options=[
                     {"label": "March 20, 2020", "value": 20200320},
                     {"label": "March 25, 2020", "value": 20200325},
                     {"label": "March 27, 2020", "value": 20200327},
                     {"label": "March 30, 2020", "value": 20200330}],
                 multi=False,
                 value=20200320,
                 style={'width': "40%"}
                 ),

    html.Div(id='output_container', children=[]),
    html.Br(),

    dcc.Graph(id='sentiment_map', figure={})
])


# ------------------------------------------------------------------------------
# Connect the Plotly graphs with Dash Components
@app.callback(
    [Output(component_id='output_container', component_property='children'),
     Output(component_id='sentiment_map', component_property='figure')],
    [Input(component_id='selected_date', component_property='value')]
)
def update_graph(date_selected):
    print(date_selected)
    print(type(date_selected))

    container = "The date chosen by user was: {}".format(date_selected)

    dff = df.copy()
    dff = dff[dff["date"] == date_selected]

    # Plotly Express
    fig = px.choropleth_mapbox(
        data_frame = dff, 
        locations = 'state', 
        geojson = india_states,
        range_color=(-1, 1),
        color = 'vader_score', 
        mapbox_style = "carto-positron",
        color_continuous_scale = px.colors.diverging.RdBu, 
        color_continuous_midpoint = 0,
        center = {'lat': 24, 'lon': 78}, 
        zoom = 2.85, 
        labels = {'vader_score': 'Sentiment Score'},
        title = "Sentiment Map"
        )

    return container, fig


# --------------------------------
if __name__ == '__main__':
    app.run_server(debug=True)

数据来源

  • 使用公开可用的 geojson 几何
  • 正在为 dash app
  • 中的日期生成情绪数据的数据框
  • NB state列对应geojson
  • 中的ID
import requests
import pandas as pd
import numpy as np
import plotly.express as px

# fmt off
india_states = requests.get("https://raw.githubusercontent.com/Subhash9325/GeoJson-Data-of-Indian-States/master/Indian_States").json()
df = pd.DataFrame({"name":['Andaman and Nicobar', 'Andhra Pradesh', 'Arunachal Pradesh',
       'Assam', 'Bihar', 'Chandigarh', 'Chhattisgarh',
       'Dadra and Nagar Haveli', 'Daman and Diu', 'Delhi', 'Goa',
       'Gujarat', 'Haryana', 'Himachal Pradesh', 'Jammu and Kashmir',
       'Jharkhand', 'Karnataka', 'Kerala', 'Lakshadweep',
       'Madhya Pradesh', 'Maharashtra', 'Manipur', 'Meghalaya', 'Mizoram',
       'Nagaland', 'Orissa', 'Puducherry', 'Punjab', 'Rajasthan',
       'Sikkim', 'Tamil Nadu', 'Tripura', 'Uttar Pradesh', 'Uttaranchal',
       'West Bengal'],
                  "state":[ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17,
       18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
       35]})
df = pd.concat([df.assign(date=d, vader_score=np.random.uniform(-1,1,len(df))) for d in [20200320, 20200325, 20200327, 20200330]])
# fmt on

达世币应用程序

# importing libraries
import dash
from dash import Dash, dcc, html, Input, Output
import plotly.express as px
import pandas as pd
from jupyter_dash import JupyterDash

# app = Dash(__name__)
app = JupyterDash(__name__)

# ------------------------------------------------------------------------------
# App layout
app.layout = html.Div(
    [
        html.H1(
            "Sentiment Timeline for Covid-19 in India 2021-22",
            style={"text-align": "center"},
        ),
        dcc.Dropdown(
            id="selected_date",
            options=[
                {"label": "March 20, 2020", "value": 20200320},
                {"label": "March 25, 2020", "value": 20200325},
                {"label": "March 27, 2020", "value": 20200327},
                {"label": "March 30, 2020", "value": 20200330},
            ],
            multi=False,
            value=20200320,
            style={"width": "40%"},
        ),
        html.Div(id="output_container", children=[]),
        html.Br(),
        dcc.Graph(id="sentiment_map", figure={}),
    ]
)


# ------------------------------------------------------------------------------
# Connect the Plotly graphs with Dash Components
@app.callback(
    [
        Output(component_id="output_container", component_property="children"),
        Output(component_id="sentiment_map", component_property="figure"),
    ],
    [Input(component_id="selected_date", component_property="value")],
)
def update_graph(date_selected):
    print(date_selected)
    print(type(date_selected))

    container = "The date chosen by user was: {}".format(date_selected)

    dff = df.copy()
    dff = dff[dff["date"] == date_selected]

    # Plotly Express
    fig = px.choropleth_mapbox(
        data_frame=dff,
        locations="state",
        geojson=india_states,
        featureidkey="properties.ID_1",
        range_color=(-1, 1),
        color="vader_score",
        mapbox_style="carto-positron",
        color_continuous_scale=px.colors.diverging.RdBu,
        color_continuous_midpoint=0,
        center={"lat": 24, "lon": 78},
        zoom=2.85,
        labels={"vader_score": "Sentiment Score"},
        title="Sentiment Map",
    )

    return container, fig


# --------------------------------
if __name__ == "__main__":
    #     app.run_server(debug=True)
    app.run_server(mode="inline")