如何减去两个不同数据帧之间的行并替换原始值?

How to subtract rows between two different dataframes and replace original value?

我有两个数据框,如下所示。如何通过 10 减 3,55 减 2 来替换 Bank1 数据?

import pandas as pd

data = [['Bank1', 10, 55], ['Bank2', 15,65], ['Bank3', 14,54]]
df1 = pd.DataFrame(data, columns = ['BankName', 'Value1','Value2'])

df2 = pd.DataFrame([[3, 2]], columns = ['Value1','Value2'])

期望输出(仅替换 Bank1 中的值):

BankName Value1 Value2
Bank1 7 53
Bank2 15 65
Bank3 14 54

尝试,使用 sub + combine_first

df1.sub(df2).combine_first(df1)

  BankName  Value1  Value2
0    Bank1     7.0    53.0
1    Bank2    15.0    65.0
2    Bank3    14.0    54.0

第一个解决方案是通过 Banknamedf22 中创建 index 以通过 df1 对齐以进行正确的行减法:

df.set_index('BankName').sub(df2.set_index([['Bank1']]), fill_value=0)

df.set_index('BankName').sub(df2.set_index([['Bank2']]), fill_value=0)

您需要使用 BankNamedf2 创建新列,在两个 DataFrame 中将 BankName 转换为 index,因此可以减去这一行:

df22 = df2.assign(BankName = 'Bank1').set_index('BankName')
df = df1.set_index('BankName').sub(df22, fill_value=0).reset_index()
print (df)
  BankName  Value1  Value2
0    Bank1     7.0    53.0
1    Bank2    15.0    65.0
2    Bank3    14.0    54.0

减去 Bank2:

df22 = df2.assign(BankName = 'Bank2').set_index('BankName')
df = df1.set_index('BankName').sub(df22, fill_value=0).reset_index()
print (df)

  BankName  Value1  Value2
0    Bank1    10.0    55.0
1    Bank2    12.0    63.0
2    Bank3    14.0    54.0

另一种过滤方式 BankName:

m = df1['BankName']=='Bank1'
df1.loc[m, df2.columns] = df1.loc[m, df2.columns].sub(df2.iloc[0])
print (df1)
  BankName  Value1  Value2
0    Bank1       7      53
1    Bank2      15      65
2    Bank3      14      54

m = df1['BankName']=='Bank2'
df1.loc[m, df2.columns] = df1.loc[m, df2.columns].sub(df2.iloc[0])