R:所有样本看起来都一样
R: All Samples Appearing As the Same
我正在使用 R 编程语言。我有一个数据集,其中包含一个人的身高以及他们是否打篮球。
我想看看平均而言,80% 以上(身高方面)的人是否打篮球。
为此,我:
- 我将数据随机分成 70% 的组(训练)和 30% 的组(测试)
- 我计算训练组的第 80 个百分位数:使用这个第 80 个百分位数,我看到测试组有多少人打篮球
- 我计算我的平均准确度(在测试组)
- 我多次重复此过程(例如 100 次)并计算总平均值。
这是为这个例子生成数据的 R 代码:
set.seed(123)
height <- rnorm(1000,210,5)
status <- c("basketball", "not_basketball")
basketball_status <- as.character(sample(status, 1000, replace=TRUE, prob=c(0.80, 0.20)))
data_1 <- data.frame(height, basketball_status)
height <- rnorm(1000,190,1)
status <- c("basketball", "not_basketball")
basketball_status <- as.character(sample(status, 1000, replace=TRUE, prob=c(0.8, 0.2)))
data_2 <- data.frame(height, basketball_status)
height <- rnorm(1000,170,5)
status <- c("basketball", "not_basketball")
basketball_status <- as.character(sample(status, 1000, replace=TRUE, prob=c(0.20, 0.80)))
data_3 <- data.frame(height, basketball_status)
my_data <- rbind(data_1, data_2, data_3)
这是迭代过程:
library(dplyr)
results <- list()
for (i in 1:100) {
train_i<-sample_frac(my_data, 0.7)
sid<-as.numeric(rownames(train_i))
test_i<-my_data[-sid,]
quantiles = data.frame( train_i %>% summarise (quant_1 = quantile(height, 0.80)))
test_i$basketball_pred = as.character(ifelse(test_i$height > quantiles$quant_1 , "basketball", "not_basketball" ))
test_i$accuracy = ifelse(test_i$basketball_pred == test_i$basketball_status, 1, 0)
results_tmp = data.frame(test_i %>%
dplyr::summarize(Mean = mean(accuracy, na.rm=TRUE)))
results_tmp$iteration = i
results_tmp$total_mean = mean(test_i$accuracy)
results[[i]] <- results_tmp
}
results
results_df <- do.call(rbind.data.frame, results)
但是当我 运行 迭代过程时,所有平均值看起来都一样:
head(results_df)
Mean iteration total_mean
1 0.8344444 1 0.8344444
2 0.8344444 2 0.8344444
3 0.8344444 3 0.8344444
4 0.8344444 4 0.8344444
5 0.8344444 5 0.8344444
6 0.8344444 6 0.8344444
问题:有谁知道为什么会这样?
谢谢
我认为 sid<-as.numeric(rownames(train_i))
没有按照您的预期进行。您可能希望确定前一行 train_i<-sample_frac(my_data, 0.7)
中包含哪些原始数据框行,但它实际上只是输出 1:2100,以便以后的所有步骤每次都提供相同的结果。
我认为如果您将这些行替换为:
my_data$row = 1:nrow(my_data)
train_i <- sample_frac(my_data, 0.7)
sid <- train_i$row
您会得到预期的结果。
Mean iteration total_mean
1 0.5111111 1 0.5111111
2 0.5244444 2 0.5244444
3 0.5177778 3 0.5177778
4 0.5488889 4 0.5488889
5 0.5322222 5 0.5322222
适合我的完整代码:
results <- list()
for (i in 1:100) {
my_data$row = 1:nrow(my_data)
train_i<-sample_frac(my_data, 0.7)
sid<-train_i$row
test_i<-my_data[-sid,]
quantiles = data.frame( train_i %>% summarise (quant_1 = quantile(height, 0.80)))
test_i$basketball_pred = ifelse(test_i$height > quantiles$quant_1 , "basketball", "not_basketball" )
test_i$accuracy = ifelse(test_i$basketball_pred == test_i$basketball_status, 1, 0)
results_tmp = data.frame(test_i %>%
dplyr::summarize(Mean = mean(accuracy, na.rm=TRUE)))
results_tmp$iteration = i
results_tmp$total_mean = mean(test_i$accuracy)
results[[i]] <- results_tmp
}
我正在使用 R 编程语言。我有一个数据集,其中包含一个人的身高以及他们是否打篮球。
我想看看平均而言,80% 以上(身高方面)的人是否打篮球。
为此,我:
- 我将数据随机分成 70% 的组(训练)和 30% 的组(测试)
- 我计算训练组的第 80 个百分位数:使用这个第 80 个百分位数,我看到测试组有多少人打篮球
- 我计算我的平均准确度(在测试组)
- 我多次重复此过程(例如 100 次)并计算总平均值。
这是为这个例子生成数据的 R 代码:
set.seed(123)
height <- rnorm(1000,210,5)
status <- c("basketball", "not_basketball")
basketball_status <- as.character(sample(status, 1000, replace=TRUE, prob=c(0.80, 0.20)))
data_1 <- data.frame(height, basketball_status)
height <- rnorm(1000,190,1)
status <- c("basketball", "not_basketball")
basketball_status <- as.character(sample(status, 1000, replace=TRUE, prob=c(0.8, 0.2)))
data_2 <- data.frame(height, basketball_status)
height <- rnorm(1000,170,5)
status <- c("basketball", "not_basketball")
basketball_status <- as.character(sample(status, 1000, replace=TRUE, prob=c(0.20, 0.80)))
data_3 <- data.frame(height, basketball_status)
my_data <- rbind(data_1, data_2, data_3)
这是迭代过程:
library(dplyr)
results <- list()
for (i in 1:100) {
train_i<-sample_frac(my_data, 0.7)
sid<-as.numeric(rownames(train_i))
test_i<-my_data[-sid,]
quantiles = data.frame( train_i %>% summarise (quant_1 = quantile(height, 0.80)))
test_i$basketball_pred = as.character(ifelse(test_i$height > quantiles$quant_1 , "basketball", "not_basketball" ))
test_i$accuracy = ifelse(test_i$basketball_pred == test_i$basketball_status, 1, 0)
results_tmp = data.frame(test_i %>%
dplyr::summarize(Mean = mean(accuracy, na.rm=TRUE)))
results_tmp$iteration = i
results_tmp$total_mean = mean(test_i$accuracy)
results[[i]] <- results_tmp
}
results
results_df <- do.call(rbind.data.frame, results)
但是当我 运行 迭代过程时,所有平均值看起来都一样:
head(results_df)
Mean iteration total_mean
1 0.8344444 1 0.8344444
2 0.8344444 2 0.8344444
3 0.8344444 3 0.8344444
4 0.8344444 4 0.8344444
5 0.8344444 5 0.8344444
6 0.8344444 6 0.8344444
问题:有谁知道为什么会这样?
谢谢
sid<-as.numeric(rownames(train_i))
没有按照您的预期进行。您可能希望确定前一行 train_i<-sample_frac(my_data, 0.7)
中包含哪些原始数据框行,但它实际上只是输出 1:2100,以便以后的所有步骤每次都提供相同的结果。
我认为如果您将这些行替换为:
my_data$row = 1:nrow(my_data)
train_i <- sample_frac(my_data, 0.7)
sid <- train_i$row
您会得到预期的结果。
Mean iteration total_mean
1 0.5111111 1 0.5111111
2 0.5244444 2 0.5244444
3 0.5177778 3 0.5177778
4 0.5488889 4 0.5488889
5 0.5322222 5 0.5322222
适合我的完整代码:
results <- list()
for (i in 1:100) {
my_data$row = 1:nrow(my_data)
train_i<-sample_frac(my_data, 0.7)
sid<-train_i$row
test_i<-my_data[-sid,]
quantiles = data.frame( train_i %>% summarise (quant_1 = quantile(height, 0.80)))
test_i$basketball_pred = ifelse(test_i$height > quantiles$quant_1 , "basketball", "not_basketball" )
test_i$accuracy = ifelse(test_i$basketball_pred == test_i$basketball_status, 1, 0)
results_tmp = data.frame(test_i %>%
dplyr::summarize(Mean = mean(accuracy, na.rm=TRUE)))
results_tmp$iteration = i
results_tmp$total_mean = mean(test_i$accuracy)
results[[i]] <- results_tmp
}