卷积神经网络模型 - 为什么我在同一张图像上得到不同的结果

Convolutional Neural Network Model - Why do I get different results on the same image

我是神经网络的新手,我正在尝试在自定义数据集(单个目录中的猫狗图像)上训练 CNN 模型。所以我想我在这里做了大多数教程中非常常见的事情,但以防万一我会在这里给出我的完整代码。

首先我生成要处理的.csv文件:

import os
import torch

device = ("cuda" if torch.cuda.is_available() else "cpu")

train_df = pd.DataFrame(columns=["img_name","label"])
train_df["img_name"] = os.listdir("train/")
for idx, i in enumerate(os.listdir("train/")):
    if "cat" in i:
        train_df["label"][idx] = 0
    if "dog" in i:
        train_df["label"][idx] = 1

train_df.to_csv (r'train_csv.csv', index = False, header=True)

然后我准备数据集:

from torch.utils.data import Dataset
import pandas as pd
import os
from PIL import Image
import torch

class CatsAndDogsDataset(Dataset):
    def __init__(self, root_dir, annotation_file, transform=None):
        self.root_dir = root_dir
        self.annotations = pd.read_csv(annotation_file)
        self.transform = transform

    def __len__(self):
        return len(self.annotations)

    def __getitem__(self, index):
        img_id = self.annotations.iloc[index, 0]
        img = Image.open(os.path.join(self.root_dir, img_id)).convert("RGB")
        y_label = torch.tensor(float(self.annotations.iloc[index, 1]))

        if self.transform is not None:
            img = self.transform(img)

        return (img, y_label)

这是我的模型:

import torch.nn as nn
import torchvision.models as models

class CNN(nn.Module):
    def __init__(self, train_CNN=False, num_classes=1):
        super(CNN, self).__init__()
        self.train_CNN = train_CNN
        self.inception = models.inception_v3(pretrained=True, aux_logits=False)
        self.inception.fc = nn.Linear(self.inception.fc.in_features, num_classes)
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(0.5)
        self.sigmoid = nn.Sigmoid()

    def forward(self, images):
        features = self.inception(images)
        return self.sigmoid(self.dropout(self.relu(features))).squeeze(1)

这是我的超参数、转换和数据加载器:

from torch.utils.data import DataLoader
import torchvision.transforms as transforms

num_epochs = 10
learning_rate = 0.00001
train_CNN = False
batch_size = 32
shuffle = True
pin_memory = True
num_workers = 0
transform = transforms.Compose(
        [
            transforms.Resize((356, 356)),
            transforms.RandomCrop((299, 299)),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
        ]
    )
dataset = CatsAndDogsDataset("train","train_csv.csv",transform=transform)
print(len(dataset))
train_set, validation_set = torch.utils.data.random_split(dataset,[162,40])
train_loader = DataLoader(dataset=train_set, shuffle=shuffle, batch_size=batch_size,num_workers=num_workers,pin_memory=pin_memory)
validation_loader = DataLoader(dataset=validation_set, shuffle=shuffle, batch_size=batch_size,num_workers=num_workers, pin_memory=pin_memory)

model = CNN().to(device)
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

for name, param in model.inception.named_parameters():
    if "fc.weight" in name or "fc.bias" in name:
        param.requires_grad = True
    else:
        param.requires_grad = train_CNN

和准确性检查:


def check_accuracy(loader, model):
    if loader == train_loader:
        print("Checking accuracy on training data")
    else:
        print("Checking accuracy on validation data")

    num_correct = 0
    num_samples = 0
    model.eval()

    with torch.no_grad():
        for x, y in loader:
            x = x.to(device=device)
            y = y.to(device=device)

            scores = model(x)
            predictions = torch.tensor([1.0 if i >= 0.5 else 0.0 for i in scores]).to(device)
            num_correct += (predictions == y).sum()
            num_samples += predictions.size(0)
    print(
            f"Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}"
        )
    model.train()
    return f"{float(num_correct)/float(num_samples)*100:.2f}"    

这是我的训练函数:

from tqdm import tqdm

def train():
    model.train()
    for epoch in range(num_epochs):
        loop = tqdm(train_loader, total = len(train_loader), leave = True)
        if epoch % 2 == 0:
            loop.set_postfix(val_acc = check_accuracy(validation_loader, model))
        for imgs, labels in loop:
            imgs = imgs.to(device)
            labels = labels.to(device)
            outputs = model(imgs)
            loss = criterion(outputs, labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            loop.set_description(f"Epoch [{epoch}/{num_epochs}]")
            loop.set_postfix(loss = loss.item())
if __name__ == "__main__":
    train()
0%|          | 0/6 [00:00<?, ?it/s]Checking accuracy on validation data
0%|          | 0/6 [01:13<?, ?it/s, val_acc=60.00]Got 24 / 40 with accuracy 60.00
Epoch [0/10]: 100%|██████████| 6/6 [06:02<00:00, 60.39s/it, loss=0.693]
Epoch [1/10]: 100%|██████████| 6/6 [04:49<00:00, 48.23s/it, loss=0.693]
...
Epoch [8/10]: 100%|██████████| 6/6 [06:07<00:00, 61.29s/it, loss=0.693]
Epoch [9/10]: 100%|██████████| 6/6 [04:55<00:00, 49.19s/it, loss=0.781]

模型训练得很好,但是当我尝试使用它进行预测时,每次我 运行 我的 Jupyter Notebooks 中的最后一块:

都会得到不同的结果
model.eval()
img = Image.open('train/cat.22.png').convert("RGB")
img_t = transform(img)
batch_t = torch.unsqueeze(img_t, 0)
out = model(batch_t)
print(out)

tensor([0.5276], grad_fn=)

tensor([0.5000], grad_fn=)

tensor([0.5064], grad_fn=)

等每次对同一图像产生不同的结果。这是正常的吗?为什么会这样?

我没有看到您正在加载经过训练的模型。这意味着每次您初始化 CNN 模块时,inception.fc 层将使用随机权重进行初始化,这很可能是您在每次推理时得到不同结果的原因。


编辑:您的转换管道中有一个随机转换,即 RandomCrop

根据 关于 model.eval() 的使用,我相信您可能希望确保将代码单元格的下半部分包裹在 with torch.no_grad(): 上下文中。我认为它可能仍然是 learning/updating 参数,除非在那个上下文中。