如何评估rlang::syms()的输出?

How to evaluate the output of rlang::syms()?

在我的字符向量中,每个元素代表一个存在于环境中的数据对象。

my_objects <- c("mtcars", "LETTERS", "ToothGrowth")

使用 rlang::syms() 我可以将 my_objects 转换为符号列表。

library(rlang)
sym_objects <- syms(my_objects)
sym_objects
#> [[1]]
#> mtcars
#> 
#> [[2]]
#> LETTERS
#> 
#> [[3]]
#> ToothGrowth

我的问题:如何计算sym_objects以获取数据对象本身?

使用 eval() 并没有达到我想要的效果,因为它只是 return 与 sym_objects 相同。

eval(sym_objects)
#> [[1]]
#> mtcars
#> 
#> [[2]]
#> LETTERS
#> 
#> [[3]]
#> ToothGrowth

期望输出

基本上我想做

whatever_evaluation_method(sym_objects)

至return:

#> [[1]]
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
#> 
#> [[2]]
#>  [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S"
#> [20] "T" "U" "V" "W" "X" "Y" "Z"
#> 
#> [[3]]
#>     len supp dose
#> 1   4.2   VC  0.5
#> 2  11.5   VC  0.5
#> 3   7.3   VC  0.5
#> 4   5.8   VC  0.5
#> 5   6.4   VC  0.5
#> 6  10.0   VC  0.5
#> 7  11.2   VC  0.5
#> 8  11.2   VC  0.5
#> 9   5.2   VC  0.5
#> 10  7.0   VC  0.5
#> 11 16.5   VC  1.0
#> 12 16.5   VC  1.0
#> 13 15.2   VC  1.0
#> 14 17.3   VC  1.0
#> 15 22.5   VC  1.0
#> 16 17.3   VC  1.0
#> 17 13.6   VC  1.0
#> 18 14.5   VC  1.0
#> 19 18.8   VC  1.0
#> 20 15.5   VC  1.0
#> 21 23.6   VC  2.0
#> 22 18.5   VC  2.0
#> 23 33.9   VC  2.0
#> 24 25.5   VC  2.0
#> 25 26.4   VC  2.0
#> 26 32.5   VC  2.0
#> 27 26.7   VC  2.0
#> 28 21.5   VC  2.0
#> 29 23.3   VC  2.0
#> 30 29.5   VC  2.0
#> 31 15.2   OJ  0.5
#> 32 21.5   OJ  0.5
#> 33 17.6   OJ  0.5
#> 34  9.7   OJ  0.5
#> 35 14.5   OJ  0.5
#> 36 10.0   OJ  0.5
#> 37  8.2   OJ  0.5
#> 38  9.4   OJ  0.5
#> 39 16.5   OJ  0.5
#> 40  9.7   OJ  0.5
#> 41 19.7   OJ  1.0
#> 42 23.3   OJ  1.0
#> 43 23.6   OJ  1.0
#> 44 26.4   OJ  1.0
#> 45 20.0   OJ  1.0
#> 46 25.2   OJ  1.0
#> 47 25.8   OJ  1.0
#> 48 21.2   OJ  1.0
#> 49 14.5   OJ  1.0
#> 50 27.3   OJ  1.0
#> 51 25.5   OJ  2.0
#> 52 26.4   OJ  2.0
#> 53 22.4   OJ  2.0
#> 54 24.5   OJ  2.0
#> 55 24.8   OJ  2.0
#> 56 30.9   OJ  2.0
#> 57 26.4   OJ  2.0
#> 58 27.3   OJ  2.0
#> 59 29.4   OJ  2.0
#> 60 23.0   OJ  2.0

(与 list(mtcars, LETTERS, ToothGrowth) 相同)

如您所见,get() 需要一个字符串输入到 x=。要在向量或列表上应用 get()(或任何函数),您可以使用 lapply().

my_objects <- c("mtcars", "LETTERS", "ToothGrowth")

# This works
get(my_objects[1])

# Your expected result
lapply(my_objects, get)