按行拟合回归模型
Fitting a regression model row-wise
我有这样的信息组成的数据
dput(a)
structure(list(ENSEMBL = structure(c(1L, 2L, 3L, 3L, 3L, 4L), .Label = c("ENSG00000005187",
"ENSG00000006740", "ENSG00000008277", "ENSG00000013810"), class = "factor"),
log2FoldChange_Expression = c(-2.2756549273843, -1.76655532051033,
-1.58489726654531, -1.58489726654531, -1.58489726654531,
-2.04282868170093), log2FoldChange_Region = c(-2.11261476936419,
-2.37119008459253, -1.59565539803813, -2.4954310786834, -2.11050911441613,
-1.81996408306615), Peak_Region = structure(c(5L, 6L, 4L,
2L, 3L, 1L), .Label = c("Peak147010", "Peak194531", "Peak194535",
"Peak194536", "Peak75759", "Peak81940"), class = "factor")), class = "data.frame", row.names = c(NA,
-6L))
数据框小子集
a
ENSEMBL log2FoldChange_Expression log2FoldChange_Region Peak_Region
1 ENSG00000005187 -2.275655 -2.112615 Peak75759
2 ENSG00000006740 -1.766555 -2.371190 Peak81940
3 ENSG00000008277 -1.584897 -1.595655 Peak194536
4 ENSG00000008277 -1.584897 -2.495431 Peak194531
5 ENSG00000008277 -1.584897 -2.110509 Peak194535
6 ENSG00000013810 -2.042829 -1.819964 Peak147010
我的 objective 是为了适应我希望看到的回归模型
我的 log2FoldChange_Expression
我的 response variable
和 log2FoldChange_Region
是我的 independent variable
现在我知道如何运行的基本 lm 是这个
res=lm(log2FoldChange_Expression ~ log2FoldChange_Region, data=Down_data)
我的objective是看哪个不知道合不合逻辑!
- 对于
Peak_Region
及其各自的 ENSEMBL
我想拟合该模型并查看每一行的 pvalue。可以这样做吗?
我想要最终输出 table 我想在其中查看每一行的 pvalue
ENSEMBL log2FoldChange_Expression log2FoldChange_Region Peak_Region pvalue
1 ENSG00000005187 -2.275655 -2.112615 Peak75759
2 ENSG00000006740 -1.766555 -2.371190 Peak81940
3 ENSG00000008277 -1.584897 -1.595655 Peak194536
4 ENSG00000008277 -1.584897 -2.495431 Peak194531
5 ENSG00000008277 -1.584897 -2.110509 Peak194535
6 ENSG00000013810 -2.042829 -1.819964 Peak147010
看看我最后的评论。
Down_data <- structure(list(ENSEMBL = structure(c(1L, 2L, 3L, 3L, 3L, 4L),
.Label = c("ENSG00000005187","ENSG00000006740", "ENSG00000008277", "ENSG00000013810"),
class = "factor"),
log2FoldChange_Expression = c(-2.2756549273843, -1.76655532051033,-1.58489726654531, -1.58489726654531, -1.58489726654531,-2.04282868170093),
log2FoldChange_Region = c(-2.11261476936419,-2.37119008459253, -1.59565539803813, -2.4954310786834, -2.11050911441613,-1.81996408306615),
Peak_Region = structure(c(5L, 6L, 4L,2L, 3L, 1L),
.Label = c("Peak147010", "Peak194531", "Peak194535","Peak194536", "Peak75759", "Peak81940"),
class = "factor")),
class = "data.frame",row.names = c(NA,-6L))
res=lm(log2FoldChange_Expression ~ log2FoldChange_Region + ENSEMBL, data=Down_data)
summary(res)
我有这样的信息组成的数据
dput(a)
structure(list(ENSEMBL = structure(c(1L, 2L, 3L, 3L, 3L, 4L), .Label = c("ENSG00000005187",
"ENSG00000006740", "ENSG00000008277", "ENSG00000013810"), class = "factor"),
log2FoldChange_Expression = c(-2.2756549273843, -1.76655532051033,
-1.58489726654531, -1.58489726654531, -1.58489726654531,
-2.04282868170093), log2FoldChange_Region = c(-2.11261476936419,
-2.37119008459253, -1.59565539803813, -2.4954310786834, -2.11050911441613,
-1.81996408306615), Peak_Region = structure(c(5L, 6L, 4L,
2L, 3L, 1L), .Label = c("Peak147010", "Peak194531", "Peak194535",
"Peak194536", "Peak75759", "Peak81940"), class = "factor")), class = "data.frame", row.names = c(NA,
-6L))
数据框小子集
a
ENSEMBL log2FoldChange_Expression log2FoldChange_Region Peak_Region
1 ENSG00000005187 -2.275655 -2.112615 Peak75759
2 ENSG00000006740 -1.766555 -2.371190 Peak81940
3 ENSG00000008277 -1.584897 -1.595655 Peak194536
4 ENSG00000008277 -1.584897 -2.495431 Peak194531
5 ENSG00000008277 -1.584897 -2.110509 Peak194535
6 ENSG00000013810 -2.042829 -1.819964 Peak147010
我的 objective 是为了适应我希望看到的回归模型
我的 log2FoldChange_Expression
我的 response variable
和 log2FoldChange_Region
是我的 independent variable
现在我知道如何运行的基本 lm 是这个
res=lm(log2FoldChange_Expression ~ log2FoldChange_Region, data=Down_data)
我的objective是看哪个不知道合不合逻辑!
- 对于
Peak_Region
及其各自的ENSEMBL
我想拟合该模型并查看每一行的 pvalue。可以这样做吗?
我想要最终输出 table 我想在其中查看每一行的 pvalue
ENSEMBL log2FoldChange_Expression log2FoldChange_Region Peak_Region pvalue
1 ENSG00000005187 -2.275655 -2.112615 Peak75759
2 ENSG00000006740 -1.766555 -2.371190 Peak81940
3 ENSG00000008277 -1.584897 -1.595655 Peak194536
4 ENSG00000008277 -1.584897 -2.495431 Peak194531
5 ENSG00000008277 -1.584897 -2.110509 Peak194535
6 ENSG00000013810 -2.042829 -1.819964 Peak147010
看看我最后的评论。
Down_data <- structure(list(ENSEMBL = structure(c(1L, 2L, 3L, 3L, 3L, 4L),
.Label = c("ENSG00000005187","ENSG00000006740", "ENSG00000008277", "ENSG00000013810"),
class = "factor"),
log2FoldChange_Expression = c(-2.2756549273843, -1.76655532051033,-1.58489726654531, -1.58489726654531, -1.58489726654531,-2.04282868170093),
log2FoldChange_Region = c(-2.11261476936419,-2.37119008459253, -1.59565539803813, -2.4954310786834, -2.11050911441613,-1.81996408306615),
Peak_Region = structure(c(5L, 6L, 4L,2L, 3L, 1L),
.Label = c("Peak147010", "Peak194531", "Peak194535","Peak194536", "Peak75759", "Peak81940"),
class = "factor")),
class = "data.frame",row.names = c(NA,-6L))
res=lm(log2FoldChange_Expression ~ log2FoldChange_Region + ENSEMBL, data=Down_data)
summary(res)