如何在 MLFlow 的实验级别设置标签
How to set a tag at the experiment level in MLFlow
我可以看到 MLFlow 中的实验可以有标签(比如 运行s 可以有标签)。
我可以使用 mlflow.set_tag
设置 运行 的标签,但如何为实验设置它?
如果你查看 Python API,非常 first example in mlflow.tracking package
that shows how to create the MLflowClient
is really showing how to tag experiment using the client.set_experiment_tag
function (doc):
from mlflow.tracking import MlflowClient
# Create an experiment with a name that is unique and case sensitive.
client = MlflowClient()
experiment_id = client.create_experiment("Social NLP Experiments")
client.set_experiment_tag(experiment_id, "nlp.framework", "Spark NLP")
您也可以使用 set_model_version_tag function, and for registered model with set_registered_model_tag.
为模型版本设置它
我可以看到 MLFlow 中的实验可以有标签(比如 运行s 可以有标签)。
我可以使用 mlflow.set_tag
设置 运行 的标签,但如何为实验设置它?
如果你查看 Python API,非常 first example in mlflow.tracking package
that shows how to create the MLflowClient
is really showing how to tag experiment using the client.set_experiment_tag
function (doc):
from mlflow.tracking import MlflowClient
# Create an experiment with a name that is unique and case sensitive.
client = MlflowClient()
experiment_id = client.create_experiment("Social NLP Experiments")
client.set_experiment_tag(experiment_id, "nlp.framework", "Spark NLP")
您也可以使用 set_model_version_tag function, and for registered model with set_registered_model_tag.
为模型版本设置它