运行 套索回归方法出现错误

I got an error while running lasso regression method

raise NotFittedError(msg % {'name': type(estimator).name}) sklearn.exceptions.NotFittedError: This Lasso instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.


from sklearn import datasets
from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split
#
# Load the Boston Data Set
#
bh = datasets.load_boston()
X = bh.data
y = bh.target
#
# Create training and test split
#
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
#
# Create an instance of Lasso Regression implementation
#
lasso = Lasso(alpha=1.0)
#
# Fit the Lasso model
#
lasso.fit(X_test, y_test)
#
# Create the model score
#
#lasso.score(X_test, y_test), lasso.score(X_train, y_train)
lasso_reg = Lasso(normalize=True)
y_pred_lass =lasso_reg.predict(X_test)
print(y_pred_lass)

您实际上已经创建了两个套索模型。一个叫lasso你适合哪个。但是在那之后,您创建了另一个 lasso_reg = Lasso(normalize=True),您尝试调用 predict 但该模型尚未安装。试试这个:

from sklearn import datasets
from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split

bh = datasets.load_boston()
X = bh.data
y = bh.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

lasso = Lasso(alpha=1.0, normalize=True)

lasso.fit(X_test, y_test)

y_pred_lass =lasso.predict(X_test)
print(y_pred_lass)

正如错误所说,您必须在调用 lasso_reg.predict(X_test) 之前调用 lasso_reg.fit(X_test, y_test) 这将解决问题。

lasso_reg = Lasso(normalize=True)
lasso_reg.fit(X_test, y_test)
y_pred_lass =lasso_reg.predict(X_test)
print(y_pred_lass)