如何将数组的数组(字符串类型)转换为结构 - Spark/Scala?

How to convert array of array (string type) to struct - Spark/Scala?

我有一个数据框

+---------------------------------------------------------------+---+
|family_name                                                    |id |
+---------------------------------------------------------------+---+
|[[John, Doe, Married, 999-999-9999],[Jane, Doe, Married,Wife,]]|id1|
|[[Tom, Riddle, Single, 888-888-8888]]                          |id2|
+---------------------------------------------------------------+---+
root
 |-- family_name: string (nullable = true)
 |-- id: string (nullable = true)

我希望将列 fam_name 转换为命名结构数组

`family_name` array<struct<f_name:string,l_name:string,status:string,ph_no:string>>

我能够将 family_name 转换为数组,如下所示

val sch = ArrayType(ArrayType(StringType))

val fam_array = data
        .withColumn("family_name_clean", regexp_replace($"family_name", "\[\[", "["))
        .withColumn("family_name_clean_clean1", regexp_replace($"family_name_clean", "\]\]", "]"))
        .withColumn("ar", toArray($"family_name_clean_clean1"))
        //.withColumn("ar1", from_json($"ar", sch))
    fam_array.show(false)
    fam_array.printSchema()

+---------------------------------------------------------------+---+--------------------------------------------------------------+-------------------------------------------------------------+-----------------------------------------------------------------------+
|family_name                                                    |id |family_name_clean                                             |family_name_clean_clean1                                     |ar                                                                     |
+---------------------------------------------------------------+---+--------------------------------------------------------------+-------------------------------------------------------------+-----------------------------------------------------------------------+
|[[John, Doe, Married, 999-999-9999],[Jane, Doe, Married,Wife,]]|id1|[John, Doe, Married, 999-999-9999],[Jane, Doe, Married,Wife,]]|[John, Doe, Married, 999-999-9999],[Jane, Doe, Married,Wife,]|[[John,  Doe,  Married,  999-999-9999], [Jane,  Doe,  Married, Wife, ]]|
|[[Tom, Riddle, Single, 888-888-8888]]                          |id2|[Tom, Riddle, Single, 888-888-8888]]                          |[Tom, Riddle, Single, 888-888-8888]                          |[[Tom,  Riddle,  Single,  888-888-8888]]                               |
+---------------------------------------------------------------+---+--------------------------------------------------------------+-------------------------------------------------------------+-----------------------------------------------------------------------+
root
 |-- family_name: string (nullable = true)
 |-- id: string (nullable = true)
 |-- family_name_clean: string (nullable = true)
 |-- family_name_clean_clean1: string (nullable = true)
 |-- ar: array (nullable = true)
 |    |-- element: string (containsNull = true)

 

sch 是所需类型的模式变量。

如何将列 ar 转换为 array<struct<>>

编辑:

我正在使用 Spark 2.3.2

要在给定字符串数组的情况下创建结构数组,您可以使用 struct function to build a struct given a list of columns combined with element_at function 在数组的特定索引处提取列元素。

要解决您的具体问题,如您正确所述,您需要做两件事:

  • 首先,将您的字符串转换为字符串数组
  • 然后,使用这个字符串数组来构建你的结构

在 Spark 3.0 及更高版本中

使用 Spark 3.0,我们可以使用 spark 内置函数执行所有这些步骤。

第一步,我会做如下:

  • 首先使用 regexp_replace function
  • family_name 字符串中删除 [[]]
  • 然后,通过使用 split function
  • 拆分此字符串来创建第一个数组级别
  • 然后,通过使用 transformsplit 函数拆分前一个数组的每个元素来创建第二个数组级别

第二步,使用struct function to build a struct, picking element in arrays using element_at function

因此,使用 Spark 3.0 及更高版本的完整代码如下,其中 data 作为输入数据帧:

import org.apache.spark.sql.functions.{col, element_at, regexp_replace, split, struct, transform}

val result = data
  .withColumn(
    "family_name", 
    transform( 
      split( // first level split
        regexp_replace(col("family_name"), "\[\[|]]", ""), // remove [[ and ]]
        "],\["
      ), 
      x => split(x, ",") // split for each element in first level array
    )
  )
  .withColumn("family_name", transform(col("family_name"), x => struct(
    element_at(x, 1).as("f_name"), // index starts at 1
    element_at(x, 2).as("l_name"),
    element_at(x, 3).as("status"),
    element_at(x, -1).as("ph_no"), // get last element of array
  )))

在火花中 2.X

使用 Spark 2.X,我们必须依赖用户定义的函数。首先,我们需要定义一个 case class 代表我们的 struct:

case class FamilyName(
  f_name: String, 
  l_name: String, 
  status: String, 
  ph_no: String
)

然后,我们定义我们的用户定义函数并将其应用于我们的输入数据框:

import org.apache.spark.sql.functions.{col, udf}

val extract_array = udf((familyName: String) => familyName
  .replaceAll("\[\[|]]", "")
  .split("],\[")
  .map(familyName => {
    val explodedFamilyName = familyName.split(",", -1)
    FamilyName(
      f_name = explodedFamilyName(0),
      l_name = explodedFamilyName(1),
      status = explodedFamilyName(2),
      ph_no = explodedFamilyName(explodedFamilyName.length - 1)
    )
  })
)

val result = data.withColumn("family_name", extract_array(col("family_name")))

结果

如果您有以下 data 数据框:

+---------------------------------------------------------------+---+
|family_name                                                    |id |
+---------------------------------------------------------------+---+
|[[John, Doe, Married, 999-999-9999],[Jane, Doe, Married,Wife,]]|id1|
|[[Tom, Riddle, Single, 888-888-8888]]                          |id2|
+---------------------------------------------------------------+---+

您得到以下 result 数据框:

+-----------------------------------------------------------------+---+
|family_name                                                      |id |
+-----------------------------------------------------------------+---+
|[{John,  Doe,  Married,  999-999-9999}, {Jane,  Doe,  Married, }]|id1|
|[{Tom,  Riddle,  Single,  888-888-8888}]                         |id2|
+-----------------------------------------------------------------+---+

具有以下架构:

root
 |-- family_name: array (nullable = true)
 |    |-- element: struct (containsNull = false)
 |    |    |-- f_name: string (nullable = true)
 |    |    |-- l_name: string (nullable = true)
 |    |    |-- status: string (nullable = true)
 |    |    |-- ph_no: string (nullable = true)
 |-- id: string (nullable = true)