使用 sf 调整质心空间多边形
Adjust centroids spatial polygons using sf
我有一个地方政府区域的 shapefile。我使用 sf_read()
将其作为 SF 对象导入到 R 中。我想计算地方政府区域之间的距离。 st_centroid()
给我多边形质心,我可以使用 st_distance()
.
计算距离
regions <- st_read("~/Downloads/regions.shp")
regions_with_centroids <- st_centroid(regions)
extract_centroids <- regions_with_centroids %>%
st_drop_geometry() %>%
as_tibble() %>%
select(region_name, centroid)
# create edge list
edge_list <- extract_centroids %>%
select(region_name) %>%
expand(from = region_name, to = region_name) %>%
filter(from < to) %>%
left_join(extract-centroids, by = c("from" = "region_name) %>%
rename(from_centroid = centroid) %>%
left_join(extract-centroids, by = c("to" = "region_name) %>%
rename(to_centroid = centroid) %>%
mutate(distance = st_distance(from_centroid, to_centroid)
不过,我很想分析一下各政府辖区内主要城区之间的通勤距离。我需要将质心转移到人口“重心”。
我可以使用人口普查普查员区域的 shapefile 来帮助我解决这个问题。普查员区域的大小按人口计算。使用 st_intersection()
我可以将普查员区域与政府区域相交。这为我提供了每个政府区域内的子区域。我可以计算所有子区域的质心。按区域分组,我可以计算一个区域中所有子区域的平均质心。平均值 centroid = "centre of gravity"
,它给出了更实际的区域间通勤距离。
regions <- st_read("~/Downloads/regions.shp")
ea <- st_read("~/Downloads/enumerator_areas.shp")
intersected <- st_intersection(regions, ea)
sub_region_centroids <- st_centroids(intersected)
我 运行 遇到困难的地方是如何找到平均质心。按地区分组无效。
mean_centroid <- sub_region_centroids %>%
group_by(region_name) %>%
summarise(mean_centroid = mean(geometry))
Warning messages:
1: In mean.default(geometry) :
the argument is not numeric or logical: returning NA
我哪里错了?
我也不知道如何将平均质心添加回原始区域的对象。
希望有人能帮助我。
计算多个质心的总体加权平均值是一个有趣的问题。
您可以考虑这样的方法 - 我计算北卡罗来纳州三个城市的加权质心(利用 {sf}
附带的众所周知且备受喜爱的 nc.shp
文件) .
工作流使用 tidyr::uncount()
首先将每个人口的城市点相乘,然后将(许多)相乘的点合并为一个多点特征。并且多点特征定义了sf::st_centroid()
操作(QED)。最后的sf::st_as_sf()
只是润色
library(sf)
library(dplyr)
library(ggplot2)
# included with sf package
shape <- st_read(system.file("shape/nc.shp", package="sf"))
# dramatis personae; population as per Wikipedia
cities <- data.frame(name = c("Raleigh", "Greensboro", "Wilmington"),
x = c(-78.633333, -79.819444, -77.912222),
y = c(35.766667, 36.08, 34.223333),
population = c(467665, 299035, 115451)) %>%
st_as_sf(coords = c("x", "y"), crs = 4326)
# a quick overview of facts on ground
ggplot() +
geom_sf(data = shape) + # polygon of North Carolina
geom_sf(data = cities, color = "red") # 3 cities
# unweighted centroid / a baseline
plain_center <- cities %>%
st_geometry() %>% # pull just geometry
st_combine() %>% # from many points to a single multipoint
st_centroid() %>% # compute centroid of the multipoint
st_as_sf() # make it a sf object again
# the fun is here!!
center_of_centers <- cities %>%
tidyr::uncount(population) %>% # multiply rows according to population
st_geometry() %>% # pull just geometry
st_combine() %>% # from many points to a single multipoint
st_centroid() %>% # compute centroid of the multipoint
st_as_sf() # make it a sf object again
# finished result
ggplot() +
geom_sf(data = shape, color = "gray75") + # polygon of North Carolina
geom_sf(data = cities, color = "red") + # 3 cities
geom_sf(data = plain_center, color = "green") + # unweighted center
geom_sf(data = center_of_centers, color = "blue", pch = 4) # population weighted center
按照@Jindra Lacko 的很好的例子,这里是如何使用纬度和经度的加权平均值来完成的。
library(sf)
library(dplyr)
library(ggplot2)
# weighted mean of lat and long
center_weighted <- cities %>%
mutate(lon = sf::st_coordinates(.)[,1],
lat = sf::st_coordinates(.)[,2]) %>%
st_drop_geometry() %>%
summarize(across(c(lon, lat), weighted.mean, w = population)) %>%
st_as_sf(coords = c("lon", "lat"), crs = 4326)
# plot it
ggplot() +
geom_sf(data = shape, color = "gray75") +
geom_sf(data = cities, color = "red") +
geom_sf(data = center_weighted, color = "blue", pch = 4)
数据
# set up example data
shape <- st_read(system.file("shape/nc.shp", package="sf"))
cities <- data.frame(name = c("Raleigh", "Greensboro", "Wilmington"),
x = c(-78.633333, -79.819444, -77.912222),
y = c(35.766667, 36.08, 34.223333),
population = c(467665, 299035, 115451)) %>%
st_as_sf(coords = c("x", "y"), crs = 4326)
我有一个地方政府区域的 shapefile。我使用 sf_read()
将其作为 SF 对象导入到 R 中。我想计算地方政府区域之间的距离。 st_centroid()
给我多边形质心,我可以使用 st_distance()
.
regions <- st_read("~/Downloads/regions.shp")
regions_with_centroids <- st_centroid(regions)
extract_centroids <- regions_with_centroids %>%
st_drop_geometry() %>%
as_tibble() %>%
select(region_name, centroid)
# create edge list
edge_list <- extract_centroids %>%
select(region_name) %>%
expand(from = region_name, to = region_name) %>%
filter(from < to) %>%
left_join(extract-centroids, by = c("from" = "region_name) %>%
rename(from_centroid = centroid) %>%
left_join(extract-centroids, by = c("to" = "region_name) %>%
rename(to_centroid = centroid) %>%
mutate(distance = st_distance(from_centroid, to_centroid)
不过,我很想分析一下各政府辖区内主要城区之间的通勤距离。我需要将质心转移到人口“重心”。
我可以使用人口普查普查员区域的 shapefile 来帮助我解决这个问题。普查员区域的大小按人口计算。使用 st_intersection()
我可以将普查员区域与政府区域相交。这为我提供了每个政府区域内的子区域。我可以计算所有子区域的质心。按区域分组,我可以计算一个区域中所有子区域的平均质心。平均值 centroid = "centre of gravity"
,它给出了更实际的区域间通勤距离。
regions <- st_read("~/Downloads/regions.shp")
ea <- st_read("~/Downloads/enumerator_areas.shp")
intersected <- st_intersection(regions, ea)
sub_region_centroids <- st_centroids(intersected)
我 运行 遇到困难的地方是如何找到平均质心。按地区分组无效。
mean_centroid <- sub_region_centroids %>%
group_by(region_name) %>%
summarise(mean_centroid = mean(geometry))
Warning messages:
1: In mean.default(geometry) :
the argument is not numeric or logical: returning NA
我哪里错了?
我也不知道如何将平均质心添加回原始区域的对象。
希望有人能帮助我。
计算多个质心的总体加权平均值是一个有趣的问题。
您可以考虑这样的方法 - 我计算北卡罗来纳州三个城市的加权质心(利用 {sf}
附带的众所周知且备受喜爱的 nc.shp
文件) .
工作流使用 tidyr::uncount()
首先将每个人口的城市点相乘,然后将(许多)相乘的点合并为一个多点特征。并且多点特征定义了sf::st_centroid()
操作(QED)。最后的sf::st_as_sf()
只是润色
library(sf)
library(dplyr)
library(ggplot2)
# included with sf package
shape <- st_read(system.file("shape/nc.shp", package="sf"))
# dramatis personae; population as per Wikipedia
cities <- data.frame(name = c("Raleigh", "Greensboro", "Wilmington"),
x = c(-78.633333, -79.819444, -77.912222),
y = c(35.766667, 36.08, 34.223333),
population = c(467665, 299035, 115451)) %>%
st_as_sf(coords = c("x", "y"), crs = 4326)
# a quick overview of facts on ground
ggplot() +
geom_sf(data = shape) + # polygon of North Carolina
geom_sf(data = cities, color = "red") # 3 cities
# unweighted centroid / a baseline
plain_center <- cities %>%
st_geometry() %>% # pull just geometry
st_combine() %>% # from many points to a single multipoint
st_centroid() %>% # compute centroid of the multipoint
st_as_sf() # make it a sf object again
# the fun is here!!
center_of_centers <- cities %>%
tidyr::uncount(population) %>% # multiply rows according to population
st_geometry() %>% # pull just geometry
st_combine() %>% # from many points to a single multipoint
st_centroid() %>% # compute centroid of the multipoint
st_as_sf() # make it a sf object again
# finished result
ggplot() +
geom_sf(data = shape, color = "gray75") + # polygon of North Carolina
geom_sf(data = cities, color = "red") + # 3 cities
geom_sf(data = plain_center, color = "green") + # unweighted center
geom_sf(data = center_of_centers, color = "blue", pch = 4) # population weighted center
按照@Jindra Lacko 的很好的例子,这里是如何使用纬度和经度的加权平均值来完成的。
library(sf)
library(dplyr)
library(ggplot2)
# weighted mean of lat and long
center_weighted <- cities %>%
mutate(lon = sf::st_coordinates(.)[,1],
lat = sf::st_coordinates(.)[,2]) %>%
st_drop_geometry() %>%
summarize(across(c(lon, lat), weighted.mean, w = population)) %>%
st_as_sf(coords = c("lon", "lat"), crs = 4326)
# plot it
ggplot() +
geom_sf(data = shape, color = "gray75") +
geom_sf(data = cities, color = "red") +
geom_sf(data = center_weighted, color = "blue", pch = 4)
数据
# set up example data
shape <- st_read(system.file("shape/nc.shp", package="sf"))
cities <- data.frame(name = c("Raleigh", "Greensboro", "Wilmington"),
x = c(-78.633333, -79.819444, -77.912222),
y = c(35.766667, 36.08, 34.223333),
population = c(467665, 299035, 115451)) %>%
st_as_sf(coords = c("x", "y"), crs = 4326)