运行 Flask 服务器启动时的 mask-rcnn 模型
Running a mask-rcnn model on Flask server startup
这是我当前运行良好的 Flask 代码,它从客户端接收带有图像的 POST 请求,通过模型运行它(基于此 GH:https://github.com/matterport/Mask_RCNN),并且将蒙版图像发送回客户端。
但是,它正在从 Configuration
文件加载模型并为每个请求加载权重,这需要很长时间。我想在服务器启动时加载模型和权重并将其传递给索引函数。我已经尝试过其他问题的解决方案,但没有运气。请问是不是因为我加载的是一个模型,然后是权重,而不是只加载一个h5模型文件?
Run code after flask application has started
Flask 应用程序:
from flask import Flask, jsonify, request
import base64
import cv2
import numpy as np
from Configuration import create_model
app = Flask(__name__)
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == "POST":
# Load the image sent from the client
imagefile = request.files['image'].read() # Type: bytes
jpg_as_np = np.frombuffer(imagefile, dtype=np.uint8) # Convert to numpy array
img = cv2.imdecode(jpg_as_np, flags=1) # Decode from numpy array to opencv object - This is an array
### Enter OpenCV/Tensorflow below ###
model = create_model()
image = img[..., ::-1]
# Detect objects
r = model.detect([image], verbose=0)[0]
REDACTED VISUALIATION CODE
### ###
string = base64.b64encode(cv2.imencode('.jpg', masked_image)[1]).decode() # Convert back to b64 string ready for json.
return jsonify({"count": str(r["masks"].shape[2]), 'image': string})
if __name__ == "__main__":
app.run()
配置:
def create_model():
device = "/cpu:0"
weights_path = "weights.h5"
with tf.device(device):
model = modellib.MaskRCNN(mode="inference", model_dir=weights_path, config=InferenceConfig())
model.load_weights(weights_path, by_name=True)
print("Weights Loaded")
return model
我使用 before_first_request
装饰器解决了这个问题。以下是一般结构:
app = Flask(__name__)
@app.before_first_request
def before_first_request_func():
MOODEL WEIGHT LOADING CODE
return model
@app.route('/', methods=['POST'])
def index():
if request.method == "POST":
REDACTED LOADING CODE
# Detect objects
r = model.detect([image], verbose=0)[0]
REDACTED VISUALISATION CODE
string = base64.b64encode(cv2.imencode('.jpg', masked_image)[1]).decode() # Convert back to b64 string ready for json.
return jsonify({"count": str(r["masks"].shape[2]), 'image': string})
if __name__ == "__main__":
app.run()
model
保存在内存中,以后可以在检测函数中引用。它可用于每个 POST 请求,不需要重新加载。
这是我当前运行良好的 Flask 代码,它从客户端接收带有图像的 POST 请求,通过模型运行它(基于此 GH:https://github.com/matterport/Mask_RCNN),并且将蒙版图像发送回客户端。
但是,它正在从 Configuration
文件加载模型并为每个请求加载权重,这需要很长时间。我想在服务器启动时加载模型和权重并将其传递给索引函数。我已经尝试过其他问题的解决方案,但没有运气。请问是不是因为我加载的是一个模型,然后是权重,而不是只加载一个h5模型文件?
Flask 应用程序:
from flask import Flask, jsonify, request
import base64
import cv2
import numpy as np
from Configuration import create_model
app = Flask(__name__)
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == "POST":
# Load the image sent from the client
imagefile = request.files['image'].read() # Type: bytes
jpg_as_np = np.frombuffer(imagefile, dtype=np.uint8) # Convert to numpy array
img = cv2.imdecode(jpg_as_np, flags=1) # Decode from numpy array to opencv object - This is an array
### Enter OpenCV/Tensorflow below ###
model = create_model()
image = img[..., ::-1]
# Detect objects
r = model.detect([image], verbose=0)[0]
REDACTED VISUALIATION CODE
### ###
string = base64.b64encode(cv2.imencode('.jpg', masked_image)[1]).decode() # Convert back to b64 string ready for json.
return jsonify({"count": str(r["masks"].shape[2]), 'image': string})
if __name__ == "__main__":
app.run()
配置:
def create_model():
device = "/cpu:0"
weights_path = "weights.h5"
with tf.device(device):
model = modellib.MaskRCNN(mode="inference", model_dir=weights_path, config=InferenceConfig())
model.load_weights(weights_path, by_name=True)
print("Weights Loaded")
return model
我使用 before_first_request
装饰器解决了这个问题。以下是一般结构:
app = Flask(__name__)
@app.before_first_request
def before_first_request_func():
MOODEL WEIGHT LOADING CODE
return model
@app.route('/', methods=['POST'])
def index():
if request.method == "POST":
REDACTED LOADING CODE
# Detect objects
r = model.detect([image], verbose=0)[0]
REDACTED VISUALISATION CODE
string = base64.b64encode(cv2.imencode('.jpg', masked_image)[1]).decode() # Convert back to b64 string ready for json.
return jsonify({"count": str(r["masks"].shape[2]), 'image': string})
if __name__ == "__main__":
app.run()
model
保存在内存中,以后可以在检测函数中引用。它可用于每个 POST 请求,不需要重新加载。