Python OpenCv解析进度条
Python OpenCv parse progress bar
UPD:添加了工作 MWE。
我正在尝试解析游戏中的 HP 量。我知道图像的宽度并且只得到 HP 条的填充部分的宽度的想法。然后计算一下。
以前效果很好。但最近游戏得到了一些更新,颜色发生了变化。我知道。只是一个颜色.
这是我完全有效的 MWE 代码:您可以尝试使用附在 post[=39= 末尾的源文件 ]
import cv2
import numpy as np
def parse_hp(hp_area):
width = int(hp_area.shape[1] * 5)
height = int(hp_area.shape[0] * 5)
dim = (width, height)
# resize image
resized = cv2.resize(hp_area, dim, interpolation=cv2.INTER_AREA)
# Color segmentation
hsv = cv2.cvtColor(resized, cv2.COLOR_BGR2HSV)
lower_red = np.array([0, 50, 50])
upper_red = np.array([5, 255, 255])
mask = cv2.inRange(hsv, lower_red, upper_red)
res = cv2.bitwise_and(resized, resized, mask=mask)
# Contour exctraction
imgray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(imgray, (5, 5), 0)
ret, thresholded = cv2.threshold(blurred, 50, 255, 0)
contours, h = cv2.findContours(thresholded, 1, 2)
if contours:
cnt = contours[0]
approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True)
if cv2.contourArea(cnt) > 25: # to discard noise from the color segmentation
contour_poly = cv2.approxPolyDP(cnt, 3, True)
center, radius = cv2.minEnclosingCircle(contour_poly)
cv2.circle(resized, (int(center[0]), int(center[1])), int(radius), (0, 255, 0), 2)
cv2.imshow("Found limits", resized)
cv2.waitKey(0)
resized_width = int(resized.shape[1])
hp_width = radius * 2
return int(hp_width * 100 / resized_width)
else:
return -1
if __name__ == "__main__":
hp_area = cv2.imread("/Users/vetalll/Documents/Cv2Working.png")
result = parse_hp(hp_area)
print(result)
我尝试使用这些值。但它不起作用。 openCv 无法识别它们:
lower_red = np.array([355, 44, 45])
upper_red = np.array([356, 41, 43])
现在颜色有点purple.I知道它使用 HSV 颜色但真的不知道如何调整它以使其工作。 |
工作图像:
图片无效:
源图片可以在这里抓取:
https://drive.google.com/file/d/1dJ4ePw_7oJov_OU5n6IO6fwdm_N3W5k2/view?usp=sharing
经过一番猜测,我得出了这些值。希望他们工作:
import cv2
import numpy as np
def parse_hp(hp_area):
width = int(hp_area.shape[1] * 5)
height = int(hp_area.shape[0] * 5)
dim = (width, height)
# resize image
resized = cv2.resize(hp_area, dim, interpolation=cv2.INTER_AREA)
# Color segmentation
hsv = cv2.cvtColor(resized, cv2.COLOR_RGB2HSV)
lower_red = np.array([120, 170, 0])
upper_red = np.array([245, 255, 255])
mask = cv2.inRange(hsv, lower_red, upper_red)
res = cv2.bitwise_and(resized, resized, mask=mask)
# Contour exctraction
imgray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(imgray, (5, 5), 0)
ret, thresholded = cv2.threshold(blurred, 50, 255, 0)
contours, h = cv2.findContours(thresholded, 1, 2)
if contours:
cnt = contours[0]
approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True)
if cv2.contourArea(cnt) > 25: # to discard noise from the color segmentation
contour_poly = cv2.approxPolyDP(cnt, 3, True)
center, radius = cv2.minEnclosingCircle(contour_poly)
cv2.circle(resized, (int(center[0]), int(center[1])), int(radius), (0, 255, 0), 2)
cv2.imshow("Found limits", resized)
cv2.waitKey(0)
resized_width = int(resized.shape[1])
hp_width = radius * 2
return int(hp_width * 100 / resized_width)
else:
return -1
if __name__ == "__main__":
hp_area = cv2.imread("Cv2NotWorking.png")
result = parse_hp(hp_area)
print(result)
UPD:添加了工作 MWE。
我正在尝试解析游戏中的 HP 量。我知道图像的宽度并且只得到 HP 条的填充部分的宽度的想法。然后计算一下。
以前效果很好。但最近游戏得到了一些更新,颜色发生了变化。我知道。只是一个颜色.
这是我完全有效的 MWE 代码:您可以尝试使用附在 post[=39= 末尾的源文件 ]
import cv2
import numpy as np
def parse_hp(hp_area):
width = int(hp_area.shape[1] * 5)
height = int(hp_area.shape[0] * 5)
dim = (width, height)
# resize image
resized = cv2.resize(hp_area, dim, interpolation=cv2.INTER_AREA)
# Color segmentation
hsv = cv2.cvtColor(resized, cv2.COLOR_BGR2HSV)
lower_red = np.array([0, 50, 50])
upper_red = np.array([5, 255, 255])
mask = cv2.inRange(hsv, lower_red, upper_red)
res = cv2.bitwise_and(resized, resized, mask=mask)
# Contour exctraction
imgray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(imgray, (5, 5), 0)
ret, thresholded = cv2.threshold(blurred, 50, 255, 0)
contours, h = cv2.findContours(thresholded, 1, 2)
if contours:
cnt = contours[0]
approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True)
if cv2.contourArea(cnt) > 25: # to discard noise from the color segmentation
contour_poly = cv2.approxPolyDP(cnt, 3, True)
center, radius = cv2.minEnclosingCircle(contour_poly)
cv2.circle(resized, (int(center[0]), int(center[1])), int(radius), (0, 255, 0), 2)
cv2.imshow("Found limits", resized)
cv2.waitKey(0)
resized_width = int(resized.shape[1])
hp_width = radius * 2
return int(hp_width * 100 / resized_width)
else:
return -1
if __name__ == "__main__":
hp_area = cv2.imread("/Users/vetalll/Documents/Cv2Working.png")
result = parse_hp(hp_area)
print(result)
我尝试使用这些值。但它不起作用。 openCv 无法识别它们:
lower_red = np.array([355, 44, 45])
upper_red = np.array([356, 41, 43])
现在颜色有点purple.I知道它使用 HSV 颜色但真的不知道如何调整它以使其工作。 |
工作图像:
图片无效:
源图片可以在这里抓取: https://drive.google.com/file/d/1dJ4ePw_7oJov_OU5n6IO6fwdm_N3W5k2/view?usp=sharing
经过一番猜测,我得出了这些值。希望他们工作:
import cv2
import numpy as np
def parse_hp(hp_area):
width = int(hp_area.shape[1] * 5)
height = int(hp_area.shape[0] * 5)
dim = (width, height)
# resize image
resized = cv2.resize(hp_area, dim, interpolation=cv2.INTER_AREA)
# Color segmentation
hsv = cv2.cvtColor(resized, cv2.COLOR_RGB2HSV)
lower_red = np.array([120, 170, 0])
upper_red = np.array([245, 255, 255])
mask = cv2.inRange(hsv, lower_red, upper_red)
res = cv2.bitwise_and(resized, resized, mask=mask)
# Contour exctraction
imgray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(imgray, (5, 5), 0)
ret, thresholded = cv2.threshold(blurred, 50, 255, 0)
contours, h = cv2.findContours(thresholded, 1, 2)
if contours:
cnt = contours[0]
approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True)
if cv2.contourArea(cnt) > 25: # to discard noise from the color segmentation
contour_poly = cv2.approxPolyDP(cnt, 3, True)
center, radius = cv2.minEnclosingCircle(contour_poly)
cv2.circle(resized, (int(center[0]), int(center[1])), int(radius), (0, 255, 0), 2)
cv2.imshow("Found limits", resized)
cv2.waitKey(0)
resized_width = int(resized.shape[1])
hp_width = radius * 2
return int(hp_width * 100 / resized_width)
else:
return -1
if __name__ == "__main__":
hp_area = cv2.imread("Cv2NotWorking.png")
result = parse_hp(hp_area)
print(result)