如何将稀疏矩阵和密集向量相乘?
How to multiply a sparse matrix and a dense vector?
我正在尝试以下操作:
Eigen::SparseMatrix<double> bijection(2 * face_count, 2 * vert_count);
/* initialization */
Eigen::VectorXd toggles(2 * vert_count);
toggles.setOnes();
Eigen::SparseMatrix<double> deformed;
deformed = bijection * toggles;
Eigen 正在返回一个错误声明:
error: static assertion failed: THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS
586 | EIGEN_STATIC_ASSERT((internal::is_same<Dest,void>::value),THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS);
允许稀疏矩阵和向量积。我做错了什么?
问题是您的产品输出类型错误。
Eigen 文档声明定义了以下类型的乘法:
dv2 = sm1 * dv1;
稀疏矩阵乘以密集向量等于密集向量。
如果您确实需要稀疏表示,我认为没有比执行上述乘法然后使用 sparseView
成员函数将乘积转换为稀疏矩阵更好的方法了。例如
Eigen::SparseMatrix<double> bijection(2 * face_count, 2 * vert_count);
/* initialization */
Eigen::VectorXd toggles(2 * vert_count);
toggles.setOnes();
Eigen::VectorXd deformedDense = bijection * toggles;
Eigen::SparseMatrix<double> deformedSparse = deformedDense.sparseView();
如果它非常稀疏,这可能比输出到密集向量更快。否则,常规产品的99/100倍更快。
void sparsem_densev_sparsev(const SparseMatrix<double>& A, const VectorX<double>& x, SparseVector<double>& Ax)
{
Ax.resize(x.size());
for (int j = 0; j < A.outerSize(); ++j)
{
if (A.outerIndexPtr()[j + 1] - A.outerIndexPtr()[j] > 0)
{
Ax.insertBack(j) = 0;
}
}
for (int j_idx = 0; j_idx < Ax.nonZeros(); j_idx++)
{
int j = Ax.innerIndexPtr()[j_idx];
for (int k = A.outerIndexPtr()[j]; k < A.outerIndexPtr()[j + 1]; ++k)
{
int i = A.innerIndexPtr()[k];
Ax.valuePtr()[j_idx] += A.valuePtr()[k] * x.coeff(i);
}
}
}
对于(可能不是最佳的)自伴随版本(下三角),将 j_idx
循环更改为:
for (int j_idx = 0; j_idx < Ax.nonZeros(); j_idx++)
{
int j = Ax.innerIndexPtr()[j_idx];
int i_idx = j_idx;//i>= j, trick to improve binary search
for (int k = A.outerIndexPtr()[j]; k < A.outerIndexPtr()[j + 1]; ++k)
{
int i = A.innerIndexPtr()[k];
Ax.valuePtr()[j_idx] += A.valuePtr()[k] * x.coeff(i);
if (i != j)
{
i_idx = std::distance(Ax.innerIndexPtr(), std::lower_bound(Ax.innerIndexPtr() + i_idx, Ax.innerIndexPtr() + Ax.nonZeros(), i));
Ax.valuePtr()[i_idx] += A.valuePtr()[k] * x.coeff(j);
}
}
}
我正在尝试以下操作:
Eigen::SparseMatrix<double> bijection(2 * face_count, 2 * vert_count);
/* initialization */
Eigen::VectorXd toggles(2 * vert_count);
toggles.setOnes();
Eigen::SparseMatrix<double> deformed;
deformed = bijection * toggles;
Eigen 正在返回一个错误声明:
error: static assertion failed: THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS
586 | EIGEN_STATIC_ASSERT((internal::is_same<Dest,void>::value),THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS);
允许稀疏矩阵和向量积。我做错了什么?
问题是您的产品输出类型错误。
Eigen 文档声明定义了以下类型的乘法:
dv2 = sm1 * dv1;
稀疏矩阵乘以密集向量等于密集向量。
如果您确实需要稀疏表示,我认为没有比执行上述乘法然后使用 sparseView
成员函数将乘积转换为稀疏矩阵更好的方法了。例如
Eigen::SparseMatrix<double> bijection(2 * face_count, 2 * vert_count);
/* initialization */
Eigen::VectorXd toggles(2 * vert_count);
toggles.setOnes();
Eigen::VectorXd deformedDense = bijection * toggles;
Eigen::SparseMatrix<double> deformedSparse = deformedDense.sparseView();
如果它非常稀疏,这可能比输出到密集向量更快。否则,常规产品的99/100倍更快。
void sparsem_densev_sparsev(const SparseMatrix<double>& A, const VectorX<double>& x, SparseVector<double>& Ax)
{
Ax.resize(x.size());
for (int j = 0; j < A.outerSize(); ++j)
{
if (A.outerIndexPtr()[j + 1] - A.outerIndexPtr()[j] > 0)
{
Ax.insertBack(j) = 0;
}
}
for (int j_idx = 0; j_idx < Ax.nonZeros(); j_idx++)
{
int j = Ax.innerIndexPtr()[j_idx];
for (int k = A.outerIndexPtr()[j]; k < A.outerIndexPtr()[j + 1]; ++k)
{
int i = A.innerIndexPtr()[k];
Ax.valuePtr()[j_idx] += A.valuePtr()[k] * x.coeff(i);
}
}
}
对于(可能不是最佳的)自伴随版本(下三角),将 j_idx
循环更改为:
for (int j_idx = 0; j_idx < Ax.nonZeros(); j_idx++)
{
int j = Ax.innerIndexPtr()[j_idx];
int i_idx = j_idx;//i>= j, trick to improve binary search
for (int k = A.outerIndexPtr()[j]; k < A.outerIndexPtr()[j + 1]; ++k)
{
int i = A.innerIndexPtr()[k];
Ax.valuePtr()[j_idx] += A.valuePtr()[k] * x.coeff(i);
if (i != j)
{
i_idx = std::distance(Ax.innerIndexPtr(), std::lower_bound(Ax.innerIndexPtr() + i_idx, Ax.innerIndexPtr() + Ax.nonZeros(), i));
Ax.valuePtr()[i_idx] += A.valuePtr()[k] * x.coeff(j);
}
}
}