SciPy 优化中的非线性约束

NonlinearConstraints in SciPy Optimize

我正在尝试使用 SciPy 中的优化模块,只是编写简短的试用程序。当存在线性约束时,我可以获得解决方案,但 Hessian 定义不起作用。我在 this site 上使用了示例,但是当我尝试不使用内置 Rosenberg 函数及其 hessian 时出现错误。

也尝试了网上找到的一个简单问题,我的代码是:

import numpy as np
from scipy import optimize
from scipy.optimize import NonlinearConstraint

def fun(x):
    return x[0]**2+x[1]**2-8*x[1]+16

bounds = optimize.Bounds([0,0,0],[np.inf,np.inf,np.inf])

def cons_f(x):
    return x[0]**2+x[1]**2+x[2]
def cons_J(x):
    return [2*x[0],2*x[1],1]
def cons_H(x,v):
    return v[0]*[2,2,0]
nonlinear_constraint = optimize.NonlinearConstraint(cons_f, -np.inf, 6, jac=cons_J, hess=cons_H)

x0=[1,1]
res = optimize.minimize(fun, x0, method='trust-constr', jac=cons_J, hess=cons_H,
               constraints=[nonlinear_constraint],
               options={'verbose': 1}, bounds=bounds)
print(res.x)

我在这两种情况下都收到以下错误:

Traceback (most recent call last):
  File "C:\Users\user\OneDrive - EOP\Escritorio\Test.py", line 19, in <module>
    res = optimize.minimize(fun, x0, method='trust-constr', jac=cons_J, hess=cons_H,
  File "C:\Users\user\AppData\Local\Programs\Python\Python39\lib\site-packages\scipy\optimize\_minimize.py", line 634, in minimize
    return _minimize_trustregion_constr(fun, x0, args, jac, hess, hessp,
  File "C:\Users\user\AppData\Local\Programs\Python\Python39\lib\site-packages\scipy\optimize\_trustregion_constr\minimize_trustregion_constr.py", line 332, in _minimize_trustregion_constr
    objective = ScalarFunction(fun, x0, args, grad, hess,
  File "C:\Users\user\AppData\Local\Programs\Python\Python39\lib\site-packages\scipy\optimize\_differentiable_functions.py", line 163, in __init__
    self.H = hess(np.copy(x0), *args)
TypeError: cons_H() missing 1 required positional argument: 'v'

这里有几个问题:

  1. 通过设置 jac=cons_Jhess=cons_H,您将约束函数的导数用作 objective 导数,这可能不是您想要的。
  2. 约束hessiancons_H是错误的。
  3. 您的约束函数是三个变量的函数,但您的初始猜测 x0minimize 认为您有两个变量的优化问题。

解决所有问题后,您的代码可能如下所示:

import numpy as np
from scipy.optimize import Bounds, minimize, NonlinearConstraint

# objective and derivatives
def fun(x):
    return x[0]**2+x[1]**2-8*x[1]+16

def grad(x):
    return np.array([2*x[0], 2*x[1]-8, 0])

def hess(x):
    return np.array([[2, 0, 0], [0, 2, 0], [0, 0, 0]])

# constraint function and derivatives
def cons_f(x): return x[0]**2+x[1]**2+x[2]
def cons_J(x): return [2*x[0],2*x[1],1]
def cons_H(x,v): return v[0]*np.array([[2, 0, 0], [0, 2, 0], [0, 0, 0]])


# variable bounds
bounds = Bounds([0,0,0],[np.inf,np.inf,np.inf])

# constraint
con = NonlinearConstraint(cons_f, -np.inf, 6, jac=cons_J, hess=cons_H)

# initial guess
x0=[1,1,1]

res = minimize(fun, x0, method='trust-constr', jac=grad, hess=hess,
               constraints=[con], bounds=bounds)