将多级索引的第一级旋转为多级列的第一级
Pivoting first level of a multilevel index to be the first level of a multilevel column
我有一个像这样的多级索引数据框:
indx = [('location', 'a'), ('location', 'b'), ('location', 'c'), ('location2', 'a'), ('location2', 'b'), ('location2', 'c')]
indx = pd.MultiIndex.from_tuples(indx)
col = ['S1','S2','S3']
df = pd.DataFrame(np.random.randn(6, 3), index=indx, columns=col)
df
S1 S2 S3
location a -0.453549 -0.079797 0.581657
b -0.458573 -0.732625 -2.277674
c 0.874403 0.459590 -1.220271
location2 a -1.418821 0.847556 0.665808
b 1.321825 -0.150274 0.507685
c 0.894865 -0.502577 2.460591
我正在尝试将索引的第一级移动为多级列的第一级,如下所示:
header = [np.array(['location','location','location','location2','location2','location2']),
np.array(['S1','S2','S3','S1','S2','S3'])]
df = pd.DataFrame(np.random.randn(3, 6), index=['a','b','c'], columns = header )
df
location location2
S1 S2 S3 S1 S2 S3
a 1.225889 -0.547848 -0.413482 -1.038456 -1.055484 -0.143620
b -1.278012 0.403767 -0.298525 0.198157 0.327973 -0.088555
c -1.152128 0.209956 0.939142 0.458412 1.207760 -0.091029
有什么想法吗?
你想要unstack
:
df.unstack(level=0).swaplevel(0,1, axis=1).sort_index(axis=1)
输出:
location location2
S1 S2 S3 S1 S2 S3
a 0.022553 0.485896 -0.421144 1.836187 -0.354247 -1.744599
b 0.099465 -0.531600 0.165415 -0.022424 0.286443 -0.356408
c 0.660913 1.071645 1.803176 -0.514787 -0.704810 0.797522
我有一个像这样的多级索引数据框:
indx = [('location', 'a'), ('location', 'b'), ('location', 'c'), ('location2', 'a'), ('location2', 'b'), ('location2', 'c')]
indx = pd.MultiIndex.from_tuples(indx)
col = ['S1','S2','S3']
df = pd.DataFrame(np.random.randn(6, 3), index=indx, columns=col)
df
S1 S2 S3
location a -0.453549 -0.079797 0.581657
b -0.458573 -0.732625 -2.277674
c 0.874403 0.459590 -1.220271
location2 a -1.418821 0.847556 0.665808
b 1.321825 -0.150274 0.507685
c 0.894865 -0.502577 2.460591
我正在尝试将索引的第一级移动为多级列的第一级,如下所示:
header = [np.array(['location','location','location','location2','location2','location2']),
np.array(['S1','S2','S3','S1','S2','S3'])]
df = pd.DataFrame(np.random.randn(3, 6), index=['a','b','c'], columns = header )
df
location location2
S1 S2 S3 S1 S2 S3
a 1.225889 -0.547848 -0.413482 -1.038456 -1.055484 -0.143620
b -1.278012 0.403767 -0.298525 0.198157 0.327973 -0.088555
c -1.152128 0.209956 0.939142 0.458412 1.207760 -0.091029
有什么想法吗?
你想要unstack
:
df.unstack(level=0).swaplevel(0,1, axis=1).sort_index(axis=1)
输出:
location location2
S1 S2 S3 S1 S2 S3
a 0.022553 0.485896 -0.421144 1.836187 -0.354247 -1.744599
b 0.099465 -0.531600 0.165415 -0.022424 0.286443 -0.356408
c 0.660913 1.071645 1.803176 -0.514787 -0.704810 0.797522