TypeError: "hypothesis" expects pre-tokenized hypothesis (Iterable[str]):
TypeError: "hypothesis" expects pre-tokenized hypothesis (Iterable[str]):
我正在尝试计算以下各项的流星分数:
print (nltk.translate.meteor_score.meteor_score(
["this is an apple", "that is an apple"], "an apple on this tree"))
但是我每次都遇到这个错误,我不知道如何解决它。
TypeError: "hypothesis" expects pre-tokenized hypothesis (Iterable[str]): an apple on this tree
我还尝试将“这棵树上的一个苹果”放入列表中
from nltk.translate.meteor_score import meteor_score
import nltk
print (nltk.translate.meteor_score.meteor_score(
["this is an apple", "that is an apple"], ["an apple on this tree"]))
但它给了我这个错误。
TypeError: "reference" expects pre-tokenized reference (Iterable[str]): this is an apple
查看库代码,假设假设应该是可迭代的。 https://www.nltk.org/_modules/nltk/translate/meteor_score.html。错误来自:
if isinstance(hypothesis, str):
raise TypeError(
f'"hypothesis" expects pre-tokenized hypothesis (Iterable[str]): {hypothesis}'
)
尝试将“这棵树上的苹果”放入列表中。
实际上,我认为问题的正确答案是在调用函数之前对句子进行分词。例如:
for line in zip(refs, hypos):
ref = word_tokenize(line[0])
hypo = word_tokenize(line[1])
m_score += meteor_score([ref], hypo)
其中 ref 和 hypo 是一个句子串。
我正在尝试计算以下各项的流星分数:
print (nltk.translate.meteor_score.meteor_score(
["this is an apple", "that is an apple"], "an apple on this tree"))
但是我每次都遇到这个错误,我不知道如何解决它。
TypeError: "hypothesis" expects pre-tokenized hypothesis (Iterable[str]): an apple on this tree
我还尝试将“这棵树上的一个苹果”放入列表中
from nltk.translate.meteor_score import meteor_score
import nltk
print (nltk.translate.meteor_score.meteor_score(
["this is an apple", "that is an apple"], ["an apple on this tree"]))
但它给了我这个错误。
TypeError: "reference" expects pre-tokenized reference (Iterable[str]): this is an apple
查看库代码,假设假设应该是可迭代的。 https://www.nltk.org/_modules/nltk/translate/meteor_score.html。错误来自:
if isinstance(hypothesis, str):
raise TypeError(
f'"hypothesis" expects pre-tokenized hypothesis (Iterable[str]): {hypothesis}'
)
尝试将“这棵树上的苹果”放入列表中。
实际上,我认为问题的正确答案是在调用函数之前对句子进行分词。例如:
for line in zip(refs, hypos):
ref = word_tokenize(line[0])
hypo = word_tokenize(line[1])
m_score += meteor_score([ref], hypo)
其中 ref 和 hypo 是一个句子串。