Python: multiprocess workers,跟踪任务完成(缺失完成)

Python: multiprocess workers, tracking tasks completed (missing completions)

默认 multiprocessing.Pool 代码包含一个计数器,用于跟踪工作人员已完成的任务数:

    completed += 1
logging.debug('worker exiting after %d tasks' % completed)

但是从 range(12) 上升到 range(20) a pool.map 会导致计数器出错(这似乎与工人创建无关)。我也不太清楚是什么原因造成的。

例如:

import multiprocessing as mp

def ret_x(x): 
    return x
def inform():
    print('made a worker!')
pool  = mp.Pool(2, maxtasksperchild=2, initializer=inform)
res= pool.map(ret_x, range(8))
print(res)

将正常工作给予:

made a worker!
made a worker!
worker exiting after 2 tasks
worker exiting after 2 tasks
made a worker!
worker exiting after 2 tasks
made a worker!
worker exiting after 2 tasks
[0, 1, 2, 3, 4, 5, 6, 7]

但是将 range 更改为 20 不会显示正在创建任何额外的工作人员或总共 20 个已完成的任务,即使在预期列表中返回了完成的范围。

made a worker!
made a worker!
worker exiting after 2 tasks
worker exiting after 2 tasks
made a worker!
worker exiting after 2 tasks
made a worker!
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
worker exiting after 1 tasks

之所以如此,是因为您没有在 pool.map 中明确定义 "chunksize":

map(func, iterable[, chunksize])

This method chops the iterable into a number of chunks which it submits to the process pool as separate tasks. The (approximate) size of these chunks can be specified by setting chunksize to a positive integer

来源:https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing.pool

对于 8 个项目,考虑 len(pool)=2,chunksize 将为 1 ( divmod(8,2*4)) 所以你看到 (8/1)/2 workers = 4 workers

workers = (len of items / chunksize) /  tasks per process

对于 20 个项目,考虑到 len(pool)=2,chunksize 将为 3 (divmode(20,2*4)) 所以你会看到类似 (20/3)/2 = 3.3 workers

对于 40...chunksize=5,workers= (40/5)/5 = 4 workers

如果需要,可以设置chunksize=1

res = pool.map(ret_x, range(40), 1)

你会看到 (20/1)/2 = 10 个工人

python mppp.py
made a worker!
made a worker!
made a worker!
made a worker!
made a worker!
made a worker!
made a worker!
made a worker!
made a worker!
made a worker!
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

所以块大小就像一个进程的单元工作量......或类似的东西。

如何计算块大小:https://hg.python.org/cpython/file/1c54def5947c/Lib/multiprocessing/pool.py#l305