具有平滑置信区间的 ggplot2 errorbar
ggplot2 errorbar with smooth confidence interval
前几天我从coefplot
Stata包中看到了下图。我只是想知道如何使用 ggplot 绘制与错误栏类似的平滑置信区间?我已经尝试过 geom_errorbar
并且认为它无法做到这一点。还有其他想法吗?谢谢!
如果你阅读统计数据 documentation for smoothed ci plot, it's actually from David Sparks who provided the code here。你只需要稍微改变一下就可以并排了。
下面我修改了 git link 的函数,使用 ggplot()
而不是 qplot()
:
SmoothCoefficientPlot <- function(models, modelnames = "", removeintercept = FALSE){
Alphas <- seq(1, 99, 2) / 100
Multiplier <- qnorm(1 - Alphas / 2)
zzTransparency <<- 1/(length(Multiplier)/4)
CoefficientTables <- lapply(models, function(x){summary(x)$coef})
TableRows <- unlist(lapply(CoefficientTables, nrow))
if(modelnames[1] == ""){
ModelNameLabels <- rep(paste("Model", 1:length(TableRows)), TableRows)
} else {
ModelNameLabels <- rep(modelnames, TableRows)
}
MatrixofModels <- cbind(do.call(rbind, CoefficientTables), ModelNameLabels)
if(removeintercept == TRUE){
MatrixofModels <- MatrixofModels[!rownames(MatrixofModels) == "(Intercept)", ]
}
MatrixofModels <- data.frame(cbind(rownames(MatrixofModels), MatrixofModels))
MatrixofModels <- data.frame(cbind(MatrixofModels, rep(Multiplier, each = nrow(MatrixofModels))))
colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "TValue", "PValue", "ModelName", "Scalar")
MatrixofModels$IV <- factor(MatrixofModels$IV)
MatrixofModels[, -c(1, 6)] <- apply(MatrixofModels[, -c(1, 6)], 2, function(x){as.numeric(as.character(x))})
MatrixofModels$Emphasis <- by(1 - seq(0, 0.99, length = length(Multiplier) + 1)[-1], as.character(round(Multiplier, 5)), mean)[as.character(round(MatrixofModels$Scalar, 5))]
OutputPlot <- ggplot(data = MatrixofModels, aes(x = IV, y = Estimate,
ymin = Estimate - Scalar * StandardError, ymax = Estimate + Scalar * StandardError,alpha = I(zzTransparency), colour = ModelName)) +
geom_point(position=position_dodge(width=0.3))
OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
OutputPlot <- OutputPlot + geom_linerange(aes(size = 1/Emphasis),position=position_dodge(width=0.3),show.legend=FALSE)
OutputPlot <- OutputPlot + scale_size_continuous()
OutputPlot <- OutputPlot + coord_flip() + theme_bw()
return(OutputPlot)
}
首先创建两个具有相似系数和绘图的简单线性模型:
library(ggplot2)
mdls = by(mtcars,mtcars$am,function(x)lm(mpg ~ gear + drat + vs,data=x))
前几天我从coefplot
Stata包中看到了下图。我只是想知道如何使用 ggplot 绘制与错误栏类似的平滑置信区间?我已经尝试过 geom_errorbar
并且认为它无法做到这一点。还有其他想法吗?谢谢!
如果你阅读统计数据 documentation for smoothed ci plot, it's actually from David Sparks who provided the code here。你只需要稍微改变一下就可以并排了。
下面我修改了 git link 的函数,使用 ggplot()
而不是 qplot()
:
SmoothCoefficientPlot <- function(models, modelnames = "", removeintercept = FALSE){
Alphas <- seq(1, 99, 2) / 100
Multiplier <- qnorm(1 - Alphas / 2)
zzTransparency <<- 1/(length(Multiplier)/4)
CoefficientTables <- lapply(models, function(x){summary(x)$coef})
TableRows <- unlist(lapply(CoefficientTables, nrow))
if(modelnames[1] == ""){
ModelNameLabels <- rep(paste("Model", 1:length(TableRows)), TableRows)
} else {
ModelNameLabels <- rep(modelnames, TableRows)
}
MatrixofModels <- cbind(do.call(rbind, CoefficientTables), ModelNameLabels)
if(removeintercept == TRUE){
MatrixofModels <- MatrixofModels[!rownames(MatrixofModels) == "(Intercept)", ]
}
MatrixofModels <- data.frame(cbind(rownames(MatrixofModels), MatrixofModels))
MatrixofModels <- data.frame(cbind(MatrixofModels, rep(Multiplier, each = nrow(MatrixofModels))))
colnames(MatrixofModels) <- c("IV", "Estimate", "StandardError", "TValue", "PValue", "ModelName", "Scalar")
MatrixofModels$IV <- factor(MatrixofModels$IV)
MatrixofModels[, -c(1, 6)] <- apply(MatrixofModels[, -c(1, 6)], 2, function(x){as.numeric(as.character(x))})
MatrixofModels$Emphasis <- by(1 - seq(0, 0.99, length = length(Multiplier) + 1)[-1], as.character(round(Multiplier, 5)), mean)[as.character(round(MatrixofModels$Scalar, 5))]
OutputPlot <- ggplot(data = MatrixofModels, aes(x = IV, y = Estimate,
ymin = Estimate - Scalar * StandardError, ymax = Estimate + Scalar * StandardError,alpha = I(zzTransparency), colour = ModelName)) +
geom_point(position=position_dodge(width=0.3))
OutputPlot <- OutputPlot + geom_hline(yintercept = 0, lwd = I(7/12), colour = I(hsv(0/12, 7/12, 7/12)), alpha = I(5/12))
OutputPlot <- OutputPlot + geom_linerange(aes(size = 1/Emphasis),position=position_dodge(width=0.3),show.legend=FALSE)
OutputPlot <- OutputPlot + scale_size_continuous()
OutputPlot <- OutputPlot + coord_flip() + theme_bw()
return(OutputPlot)
}
首先创建两个具有相似系数和绘图的简单线性模型:
library(ggplot2)
mdls = by(mtcars,mtcars$am,function(x)lm(mpg ~ gear + drat + vs,data=x))