更新到 .Net 6 时出现问题 - 加密字符串

Problem Updating to .Net 6 - Encrypting String

我使用的字符串 Encryption/Decryption class 类似于 here 提供的字符串作为解决方案。

这在 .Net 5 中对我来说效果很好。
现在我想将我的项目更新到 .Net 6。

使用 .Net 6 时,解密的字符串确实会根据输入字符串的长度截断某个点。

▶️ 为了方便 debug/reproduce 我的问题,我创建了一个 public repro 存储库 here.

两者都使用完全相同的输入 "12345678901234567890" 和路径短语 "nzv86ri4H2qYHqc&m6rL".

调用加密方法

.Net 5 输出:"12345678901234567890"
.Net 6 输出:"1234567890123456"

长度相差4

我也查看了 breaking changes for .Net 6,但找不到指导我找到解决方案的内容。

很高兴就我的问题提出任何建议,谢谢!

加密Class

public static class StringCipher
{
    // This constant is used to determine the keysize of the encryption algorithm in bits.
    // We divide this by 8 within the code below to get the equivalent number of bytes.
    private const int Keysize = 128;

    // This constant determines the number of iterations for the password bytes generation function.
    private const int DerivationIterations = 1000;

    public static string Encrypt(string plainText, string passPhrase)
    {
        // Salt and IV is randomly generated each time, but is preprended to encrypted cipher text
        // so that the same Salt and IV values can be used when decrypting.  
        var saltStringBytes = Generate128BitsOfRandomEntropy();
        var ivStringBytes = Generate128BitsOfRandomEntropy();
        var plainTextBytes = Encoding.UTF8.GetBytes(plainText);
        using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
        {
            var keyBytes = password.GetBytes(Keysize / 8);
            using (var symmetricKey = Aes.Create())
            {
                symmetricKey.BlockSize = 128;
                symmetricKey.Mode = CipherMode.CBC;
                symmetricKey.Padding = PaddingMode.PKCS7;
                using (var encryptor = symmetricKey.CreateEncryptor(keyBytes, ivStringBytes))
                {
                    using (var memoryStream = new MemoryStream())
                    {
                        using (var cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write))
                        {
                            cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
                            cryptoStream.FlushFinalBlock();
                            // Create the final bytes as a concatenation of the random salt bytes, the random iv bytes and the cipher bytes.
                            var cipherTextBytes = saltStringBytes;
                            cipherTextBytes = cipherTextBytes.Concat(ivStringBytes).ToArray();
                            cipherTextBytes = cipherTextBytes.Concat(memoryStream.ToArray()).ToArray();
                            memoryStream.Close();
                            cryptoStream.Close();
                            return Convert.ToBase64String(cipherTextBytes);
                        }
                    }
                }
            }
        }
    }

    public static string Decrypt(string cipherText, string passPhrase)
    {
        // Get the complete stream of bytes that represent:
        // [32 bytes of Salt] + [16 bytes of IV] + [n bytes of CipherText]
        var cipherTextBytesWithSaltAndIv = Convert.FromBase64String(cipherText);
        // Get the saltbytes by extracting the first 16 bytes from the supplied cipherText bytes.
        var saltStringBytes = cipherTextBytesWithSaltAndIv.Take(Keysize / 8).ToArray();
        // Get the IV bytes by extracting the next 16 bytes from the supplied cipherText bytes.
        var ivStringBytes = cipherTextBytesWithSaltAndIv.Skip(Keysize / 8).Take(Keysize / 8).ToArray();
        // Get the actual cipher text bytes by removing the first 64 bytes from the cipherText string.
        var cipherTextBytes = cipherTextBytesWithSaltAndIv.Skip((Keysize / 8) * 2).Take(cipherTextBytesWithSaltAndIv.Length - ((Keysize / 8) * 2)).ToArray();

        using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
        {
            var keyBytes = password.GetBytes(Keysize / 8);
            using (var symmetricKey = Aes.Create())
            {
                symmetricKey.BlockSize = 128;
                symmetricKey.Mode = CipherMode.CBC;
                symmetricKey.Padding = PaddingMode.PKCS7;
                using (var decryptor = symmetricKey.CreateDecryptor(keyBytes, ivStringBytes))
                {
                    using (var memoryStream = new MemoryStream(cipherTextBytes))
                    {
                        using (var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read))
                        {
                            var plainTextBytes = new byte[cipherTextBytes.Length];
                            var decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
                            memoryStream.Close();
                            cryptoStream.Close();
                            return Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount);
                        }
                    }
                }
            }
        }
    }

    private static byte[] Generate128BitsOfRandomEntropy()
    {
        var randomBytes = new byte[16]; // 16 Bytes will give us 128 bits.
        using (var rngCsp = RandomNumberGenerator.Create())
        {
            // Fill the array with cryptographically secure random bytes.
            rngCsp.GetBytes(randomBytes);
        }
        return randomBytes;
    }
}

调用代码

var input = "12345678901234567890";
var inputLength = input.Length;
var inputBytes = Encoding.UTF8.GetBytes(input);

var encrypted = StringCipher.Encrypt(input, "nzv86ri4H2qYHqc&m6rL");

var output = StringCipher.Decrypt(encrypted, "nzv86ri4H2qYHqc&m6rL");
var outputLength = output.Length;
var outputBytes = Encoding.UTF8.GetBytes(output);

var lengthDiff = inputLength - outputLength;

原因是this breaking change:

DeflateStream, GZipStream, and CryptoStream diverged from typical Stream.Read and Stream.ReadAsync behavior in two ways:

They didn't complete the read operation until either the buffer passed to the read operation was completely filled or the end of the stream was reached.

新行为是:

Starting in .NET 6, when Stream.Read or Stream.ReadAsync is called on one of the affected stream types with a buffer of length N, the operation completes when:

At least one byte has been read from the stream, or The underlying stream they wrap returns 0 from a call to its read, indicating no more data is available.

在你的情况下,你受到影响是因为 Decrypt 方法中的这段代码:

using (var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read))
{
    var plainTextBytes = new byte[cipherTextBytes.Length];
    var decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
    memoryStream.Close();
    cryptoStream.Close();
    return Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount);
}

您没有检查 Read 实际读取了多少字节以及它是否读取了所有字节。您可以在以前的 .NET 版本中避免这种情况,因为如前所述 CryptoStream 行为与其他流不同,并且您的缓冲区长度足以容纳所有数据。但是,情况已不再如此,您需要像检查其他流一样检查它。甚至更好 - 只需使用 CopyTo:

using (var plainTextStream = new MemoryStream())
{
    cryptoStream.CopyTo(plainTextStream);
    var plainTextBytes = plainTextStream.ToArray();
    return Encoding.UTF8.GetString(plainTextBytes, 0, plainTextBytes.Length);
} 

或者如另一个答案所建议的那样更好,因为您解密了 UTF8 文本:

using (var plainTextReader = new StreamReader(cryptoStream))
{
    return plainTextReader.ReadToEnd();
}  

认为你的问题在这里:

var decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);

来自Stream.Read docs

An implementation is free to return fewer bytes than requested even if the end of the stream has not been reached.

因此,单次调用 Read 不能保证读取所有可用字节(最多 plainTextBytes.Length -- 读取较少字节数完全在其权利范围内。

.NET 6 有许多性能改进,如果这是他们以性能名义做出的那种权衡,我不会感到惊讶。

你一定要乖,一直调用Read直到returns 0,这表明return没有更多数据了。

但是,使用 StreamReader 会容易得多,它还会为您处理 UTF-8 解码。

return new StreamReader(cryptoStream).ReadToEnd();

从 .net 2.2 升级到 6 后,我遇到了完全相同的问题。它不会读取整个缓冲区 - 大多数情况下最多只读取 16 个字节,因此,只需在循环中将其分解为最多 16 个字节。

此代码可能有帮助:

int totalRead = 0;
int maxRead = 16;
while (totalRead < plainTextBytes.Length)
{
    var countLeft = plainTextBytes.Length - totalRead;
    var count = countLeft < 16 ? countLeft : maxRead;
    int bytesRead = cryptoStream.Read(plainTextBytes, totalRead, count);
    totalRead += bytesRead;
    if (bytesRead == 0) break;
}

我在我的 .net6 项目中使用了这两种扩展方法。

namespace WebApi.Utilities;

public static class StringUtil
{
    static string key = "Mohammad-Komaei@Encrypt!keY#";


    public static string Encrypt(this string text)
    {
        if (string.IsNullOrEmpty(key))
            throw new ArgumentException("Key must have valid value.", nameof(key));
        if (string.IsNullOrEmpty(text))
            throw new ArgumentException("The text must have valid value.", nameof(text));

        var buffer = Encoding.UTF8.GetBytes(text);
        var hash = SHA512.Create();
        var aesKey = new byte[24];
        Buffer.BlockCopy(hash.ComputeHash(Encoding.UTF8.GetBytes(key)), 0, aesKey, 0, 24);

        using (var aes = Aes.Create())
        {
            if (aes == null)
                throw new ArgumentException("Parameter must not be null.", nameof(aes));

            aes.Key = aesKey;

            using (var encryptor = aes.CreateEncryptor(aes.Key, aes.IV))
            using (var resultStream = new MemoryStream())
            {
                using (var aesStream = new CryptoStream(resultStream, encryptor, CryptoStreamMode.Write))
                using (var plainStream = new MemoryStream(buffer))
                {
                    plainStream.CopyTo(aesStream);
                }

                var result = resultStream.ToArray();
                var combined = new byte[aes.IV.Length + result.Length];
                Array.ConstrainedCopy(aes.IV, 0, combined, 0, aes.IV.Length);
                Array.ConstrainedCopy(result, 0, combined, aes.IV.Length, result.Length);

                return Convert.ToBase64String(combined);
            }
        }
    }


    public static string Decrypt(this string encryptedText)
    {
        if (string.IsNullOrEmpty(key))
            throw new ArgumentException("Key must have valid value.", nameof(key));
        if (string.IsNullOrEmpty(encryptedText))
            throw new ArgumentException("The encrypted text must have valid value.", nameof(encryptedText));

        var combined = Convert.FromBase64String(encryptedText);
        var buffer = new byte[combined.Length];
        var hash = SHA512.Create();
        var aesKey = new byte[24];
        Buffer.BlockCopy(hash.ComputeHash(Encoding.UTF8.GetBytes(key)), 0, aesKey, 0, 24);

        using (var aes = Aes.Create())
        {
            if (aes == null)
                throw new ArgumentException("Parameter must not be null.", nameof(aes));

            aes.Key = aesKey;

            var iv = new byte[aes.IV.Length];
            var ciphertext = new byte[buffer.Length - iv.Length];

            Array.ConstrainedCopy(combined, 0, iv, 0, iv.Length);
            Array.ConstrainedCopy(combined, iv.Length, ciphertext, 0, ciphertext.Length);

            aes.IV = iv;

            using (var decryptor = aes.CreateDecryptor(aes.Key, aes.IV))
            using (var resultStream = new MemoryStream())
            {
                using (var aesStream = new CryptoStream(resultStream, decryptor, CryptoStreamMode.Write))
                using (var plainStream = new MemoryStream(ciphertext))
                {
                    plainStream.CopyTo(aesStream);
                }

                return Encoding.UTF8.GetString(resultStream.ToArray());
            }
        }
    }
}