特定边界框颜色

Specific bounding box color

有人可以帮我修改这个现有代码,以便为我要检测的边界框使用不同的颜色吗? 例如:如果一个人检测到的边界框是红色的,如果动物或宠物检测到的是绿色的,而其他物体是蓝色的,探索了一个星期仍然没有运气修改它,如果有人能解释或提供帮助,我们将不胜感激。谢谢!

import os
import argparse
import cv2
import numpy as np
import sys
import glob
import importlib.util

parser = argparse.ArgumentParser()
parser.add_argument('--modeldir', help='Folder the .tflite file is located in', required=True)
parser.add_argument('--graph', help='Name of the .tflite file, if different than detect.tflite', default='detect.tflite')
parser.add_argument('--labels', help='Name of the labelmap file, if different than labelmap.txt', default='labelmap.txt')
parser.add_argument('--threshold', help='Minimum confidence threshold for displaying detected objects', default=0.5)
parser.add_argument('--image', help='Name of the single image to perform detection on. To run detection on multiple images, use --imagedir', default=None)
parser.add_argument('--imagedir', help='Name of the folder containing images to perform detection on. Folder must contain only images.', default=None)
parser.add_argument('--edgetpu', help='Use Coral Edge TPU Accelerator to speed up detection', action='store_true')

args = parser.parse_args()

MODEL_NAME = args.modeldir
GRAPH_NAME = args.graph
LABELMAP_NAME = args.labels
min_conf_threshold = float(args.threshold)
use_TPU = args.edgetpu



IM_NAME = args.image
IM_DIR = args.imagedir


if (IM_NAME and IM_DIR):
    print('Error! Please only use the --image argument or the --imagedir argument, not both. Issue "python TFLite_detection_image.py -h" for help.')
    sys.exit()


if (not IM_NAME and not IM_DIR):
    IM_NAME = 'test1.jpg'


pkg = importlib.util.find_spec('tflite_runtime')
if pkg:
    from tflite_runtime.interpreter import Interpreter
    if use_TPU:
        from tflite_runtime.interpreter import load_delegate
else:
    from tensorflow.lite.python.interpreter import Interpreter
    if use_TPU:
        from tensorflow.lite.python.interpreter import load_delegate


if use_TPU:
    if (GRAPH_NAME == 'detect.tflite'):
        GRAPH_NAME = 'edgetpu.tflite'



CWD_PATH = os.getcwd()


if IM_DIR:
    PATH_TO_IMAGES = os.path.join(CWD_PATH,IM_DIR)
    images = glob.glob(PATH_TO_IMAGES + '/*')

elif IM_NAME:
    PATH_TO_IMAGES = os.path.join(CWD_PATH,IM_NAME)
    images = glob.glob(PATH_TO_IMAGES)


PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,GRAPH_NAME)


PATH_TO_LABELS = os.path.join(CWD_PATH,MODEL_NAME,LABELMAP_NAME)


with open(PATH_TO_LABELS, 'r') as f:
    labels = [line.strip() for line in f.readlines()]


if labels[0] == '???':
    del(labels[0])

if use_TPU:
    interpreter = Interpreter(model_path=PATH_TO_CKPT, experimental_delegates=[load_delegate('libedgetpu.so.1.0')])
    print(PATH_TO_CKPT)
else:
    interpreter = Interpreter(model_path=PATH_TO_CKPT)

interpreter.allocate_tensors()

input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
height = input_details[0]['shape'][1]
width = input_details[0]['shape'][2]

floating_model = (input_details[0]['dtype'] == np.float32)

input_mean = 127.5
input_std = 127.5


for image_path in images:    
    image = cv2.imread(image_path)
    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    imH, imW, _ = image.shape 
    image_resized = cv2.resize(image_rgb, (width, height))
    input_data = np.expand_dims(image_resized, axis=0)

    if floating_model:
        input_data = (np.float32(input_data) - input_mean) / input_std


    interpreter.set_tensor(input_details[0]['index'],input_data)
    interpreter.invoke()


    boxes = interpreter.get_tensor(output_details[0]['index'])[0] # Bounding box coordinates of detected objects
    classes = interpreter.get_tensor(output_details[1]['index'])[0] # Class index of detected objects
    scores = interpreter.get_tensor(output_details[2]['index'])[0] # Confidence of detected objects

    for i in range(len(scores)):
        if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0)):
            ymin = int(max(1,(boxes[i][0] * imH)))
            xmin = int(max(1,(boxes[i][1] * imW)))
            ymax = int(min(imH,(boxes[i][2] * imH)))
            xmax = int(min(imW,(boxes[i][3] * imW)))
            
            cv2.rectangle(image, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)

            object_name = labels[int(classes[i])] # Look up object name from "labels" array using class index
            label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example: 'person: 72%'
            labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size
            label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close to top of window
            cv2.rectangle(image, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text in 
            cv2.putText(image, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) 


    cv2.imshow('Object detector', image)

    if cv2.waitKey(0) == ord('q'):
        break


cv2.destroyAllWindows()

基本上你想要做的是制作一个 dict,其中键是 class,值是与此处格式相同的颜色。

cv2.rectangle(image, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)

(10, 255, 0) 替换为 color_dict[classes[i]] 之类的内容,然后您将能够为每个 class.

获得不同的颜色