如何最小化创建的 R 代码的 运行 长得无法接受的时间
How to minimize the unacceptably long run time of the created R code
有一个包含三个 for 循环的代码 运行 包含足够缺失值的数据。主要问题是 长得令人无法接受 运行 的时间似乎至少需要一个多月 尽管我尽量让我的电脑在一天中的大部分时间都保持打开状态。
下面的结构是 100% 正确的,与我在使用非常少的数据点进行测试时试图实现的目标相比。但是随着列数和行数分别变为 2781 和 280,我认为这需要很长时间,尽管我 100% 确定这是 运行ning 正确的,即使我看到更新的环境 window R-Studio 每次我刷新它。
我的数据也有很多缺失值,大概是 40% 左右。我认为这也使计算时间变得非常长。
数据维度为315 * 2781。
但是,我正在尝试以 280 * 2781 矩阵形式实现输出。
我可以得到帮助以减少以下代码的 运行 时间吗?
如果可以的话,将不胜感激!
options(java.parameters = "- Xmx8000m")
memory.limit(size=8e+6)
data=read.table("C:/Data/input.txt",T,sep="\t");
data=data.frame(data)[,-1]
corr<-NULL
corr2<-NULL
corr3<-NULL
for(i in 1:280)
{
corr2<-NULL
for(j in 1:2781)
{
data2<-data[,-j]
corr<-NULL
for(k in 1:2780)
{
ifelse((is.error(grangertest(data[i:(i+35),j] ~ data2[i:(i+35),k], order = 1, na.action = na.omit)$P[2])==TRUE) || (grangertest(data[i:(i+35),j] ~ data2[i:(i+35),k], order = 1, na.action = na.omit)$P[2])>0.05|| (is.na(grangertest(data[i:(i+35),j] ~ data2[i:(i+35),k], order = 1, na.action = na.omit)$P[2])==TRUE),corr<-cbind(corr,0),corr<-cbind(corr,1))
}
corr2<-rbind(corr2,corr)
}
corr3<-rbind(corr3,rowSums(corr2))
}
我的数据片段如下:
> dput(data[1:30, 1:10])
structure(c(0.567388170165941, 0.193093325709924, 0.965938209090382,
0.348295788047835, 0.496113050729036, 0.0645384560339153, 0.946750836912543,
0.642093246569857, 0.565092500532046, 0.0952424583956599, 0.444063827162609,
0.709971546428278, 0.756330407923087, 0.601746253203601, 0.341865634545684,
0.953319212188944, 0.0788604547269642, 0.990508111426607, 0.35519331949763,
0.697004508692771, 0.285368352662772, 0.274287624517456, 0.575733694015071,
0.12937490013428, 0.00476219342090189, 0.684308280004188, 0.189448777819052,
0.615732178557664, 0.404873769031838, 0.357331350911409, 0.565436001634225,
0.380773033713922, 0.348490287549794, 0.0473814208526164, 0.389312234241515,
0.562123290728778, 0.30642102798447, 0.911173274740577, 0.566258994862437,
0.837928073247895, 0.107747194357216, 0.253737836843356, 0.651503744535148,
0.187739939894527, 0.951192815322429, 0.740037888288498, 0.0817571650259197,
0.740519099170342, 0.601534485351294, 0.120900869136676, 0.415282893227413,
0.591146623482928, 0.698511375114322, 0.08557975362055, 0.139396222075447,
0.303953414550051, 0.0743798329494894, 0.0293272000271827, 0.335832208395004,
0.665010208031163, 0.0319741254206747, 0.678886031731963, 0.154593498911709,
0.275712370406836, 0.828485634410754, 0.921500099124387, 0.651940459152684,
0.00574865937232971, 0.82236105017364, 0.55089360428974, 0.209424041677266,
0.861786168068647, 0.672873278381303, 0.301034058211371, 0.180336013436317,
0.481560358777642, 0.901354183442891, 0.986482679378241, 0.90117057505995,
0.476308439625427, 0.638073122361675, 0.27481731469743, 0.689271076582372,
0.324349449947476, 0.56620552809909, 0.867861548438668, 0.78374840435572,
0.0668482843320817, 0.276675389613956, 0.990600393852219, 0.990227151894942,
0.417612489778548, 0.391012848122045, 0.348758921027184, 0.0799746725242585,
0.88941288786009, 0.511429069796577, 0.0338982092216611, 0.240115304477513,
0.0268365524243563, 0.67206134647131, 0.816803207853809, 0.344421110814437,
0.864659120794386, 0.84128700569272, 0.116056860191748, 0.303730394458398,
0.48192183743231, 0.341675494797528, 0.0622653553728014, 0.823110743425786,
0.483212807681412, 0.968748248415068, 0.953057422768325, 0.116025703493506,
0.327919023809955, 0.590675016632304, 0.832283023977652, 0.342327545629814,
0.576901035616174, 0.942689201096073, 0.59300709143281, 0.565881528891623,
0.600007816683501, 0.133237989619374, 0.873827134957537, 0.744597729761153,
0.755133397178724, 0.0245723063126206, 0.97799762734212, 0.636845340020955,
0.73828601022251, 0.644093665992841, 0.57204390084371, 0.496023115236312,
0.703613247489557, 0.149237307952717, 0.0871439634356648, 0.0632112647872418,
0.83703236351721, 0.433215840253979, 0.430483993608505, 0.924051651498303,
0.913056606892496, 0.914889572421089, 0.215407102368772, 0.76880722376518,
0.269207723205909, 0.865548757137731, 0.28798541566357, 0.391722843516618,
0.649806497385725, 0.459413924254477, 0.907465039752424, 0.48731207777746,
0.554472463205457, 0.779784266138449, 0.566323830280453, 0.208658932242543,
0.958056638715789, 0.61858483706601, 0.838681482244283, 0.286310768220574,
0.895410191034898, 0.448722236789763, 0.297688684659079, 0.33291415637359,
0.0115265529602766, 0.850776052568108, 0.764857453294098, 0.469730701530352,
0.222089925780892, 0.0496484278701246, 0.32886885642074, 0.356443469878286,
0.612877089297399, 0.727906176587567, 0.0292073413729668, 0.429160050582141,
0.232313714455813, 0.678631312213838, 0.642334033036605, 0.99107678886503,
0.542449960019439, 0.835914565017447, 0.52798323193565, 0.303808332188055,
0.919654499506578, 0.944237019168213, 0.52141259261407, 0.794379767496139,
0.72268659202382, 0.114752230467275, 0.175116094760597, 0.437696389388293,
0.852590200025588, 0.511136321350932, 0.30879021063447, 0.174206420546398,
0.14262041519396, 0.375411552377045, 0.0204910831525922, 0.852757754037157,
0.631567053496838, 0.475924106314778, 0.508682047016919, 0.307679089019075,
0.70284536993131, 0.851252349093556, 0.0868967010173947, 0.586291917832568,
0.0529140203725547, 0.440692059928551, 0.207642213441432, 0.777513341512531,
0.141496006632224, 0.548626560717821, 0.419565241318196, 0.0702310993801802,
0.499403427587822, 0.189343606121838, 0.370725362794474, 0.888076487928629,
0.83070912421681, 0.466137421084568, 0.177098380634561, 0.91202046489343,
0.142300580162555, 0.823691181838512, 0.41561916610226, 0.939948018174618,
0.806491429451853, 0.795849160756916, 0.566376683535054, 0.36814984655939,
0.307756055146456, 0.602875682059675, 0.506007500691339, 0.538658684119582,
0.420845189364627, 0.663071365095675, 0.958144341595471, 0.793743418296799,
0.983086514985189, 0.266262857476249, 0.817585011478513, 0.122843299992383,
0.989197303075343, 0.71584410732612, 0.500571243464947, 0.397394519997761,
0.659465527161956, 0.459530522814021, 0.602246116613969, 0.250076721422374,
0.17533828667365, 0.6599256307818, 0.184704560553655, 0.15679649473168,
0.513444944983348, 0.205572377191857, 0.430164282443002, 0.131548407254741,
0.914019819349051, 0.935795902274549, 0.857401241315529, 0.977940042736009,
0.41389597626403, 0.179183913161978, 0.431347143370658, 0.477178965462372,
0.121315707685426, 0.107695729471743, 0.634954946814105, 0.859707030234858,
0.855825762730092, 0.708672808250412, 0.674073817208409, 0.672288877889514,
0.622144045541063, 0.433355041313916, 0.952878215815872, 0.229569894727319,
0.289388840552419, 0.937473804224283, 0.116283216979355, 0.659604362910613,
0.240837284363806, 0.726138337515295, 0.68390148691833, 0.381577257299796,
0.899390475358814, 0.26472729514353, 0.0383855854161084, 0.855232689995319,
0.655799814499915, 0.335587574867532, 0.163842789363116, 0.0353666560258716,
0.048316186061129), .Dim = c(30L, 10L))
我只将内部循环转换为 mapply
并进行了快速速度测试:
library(lmtest)
data <- matrix(runif(315*2781), nrow = 315)
get01 <- function(x, y) {
try(gt <- grangertest(x ~ y, order = 1, na.action = na.omit)$P[2])
if (exists("gt")) {
if (gt > 0.05 || is.na(gt)) {
return(0)
} else {
return(1)
}
} else {
return(0)
}
}
i <- 1; j <- 1
system.time(corr <- mapply(function(k) {get01(data[i:(i+35),j], data[i:(i+35),k])}, (1:2781)[-j]))
#> user system elapsed
#> 21.505 0.014 21.520
它需要执行 mapply
778680 次,因此大约需要 200 天。您要么需要使用 Granger 测试的不同方法,要么需要多个核心。这是替换完整循环的命令:
corr3 <- t(mapply(function(i) colSums(mapply(function(j) mapply(function(k) {get01(data[i:(i+35),j], data[i:(i+35),k])}, (1:2781)[-j]), 1:2781)), 1:280))
将第一个 mapply
替换为 simplify2array(parLapply
以并行化:
library(parallel)
cl <- makeCluster(detectCores())
clusterExport(cl, list("data", "get01"))
parLapply(cl, cl, function(x) require(lmtest))
corr3 <- t(simplify2array(parLapply(cl, 1:280, function(i) colSums(mapply(function(j) mapply(function(k) {get01(data[i:(i+35),j], data[i:(i+35),k])}, (1:2781)[-j]), 1:2781)))))
stopCluster(cl)
这是一个未并行化的版本,可将问题中的代码加速 4 倍以上。
问题代码中的一些瓶颈很容易检测到:
- 矩阵
corr?
在循环内扩展。解决方法是提前预留内存;
- 当只需要一次时,测试
grangertest
每次内部迭代调用 3 次;
- To
cbind
with 0
or 1
实际上是在创建向量,而不是矩阵。
下面是题目代码和下面函数的对比测试
library(lmtest)
# avoids loading an extra package
is.error <- function(x){
inherits(x, c("error", "try-error"))
}
Lag <- 5L
nr <- nrow(data)
nc <- ncol(data)
t0 <- system.time({
corr<-NULL
corr2<-NULL
corr3<-NULL
for(i in 1:(nr - Lag))
{
corr2<-NULL
data3 <- data[i:(i + Lag), ]
for(j in 1:nc)
{
data2<-data[,-j]
corr<-NULL
for(k in 1:(nc - 1L))
{
ifelse((is.error(grangertest(data[i:(i+Lag),j] ~ data2[i:(i+Lag),k], order = 1, na.action = na.omit)$P[2])==TRUE) ||
(grangertest(data[i:(i+Lag),j] ~ data2[i:(i+Lag),k], order = 1, na.action = na.omit)$P[2])>0.05 ||
(is.na(grangertest(data[i:(i+Lag),j] ~ data2[i:(i+Lag),k], order = 1, na.action = na.omit)$P[2])==TRUE),
corr<-cbind(corr,0),
corr<-cbind(corr,1)
)
}
corr2 <- rbind(corr2, corr)
}
corr3<-rbind(corr3, rowSums(corr2))
}
corr3
})
我将使用lmtest::grangertest
的简化版本。
granger_test <- function (x, y, order = 1, na.action = na.omit, ...) {
xnam <- deparse(substitute(x))
ynam <- deparse(substitute(y))
n <- length(x)
all <- cbind(x = x[-1], y = y[-1], x_1 = x[-n], y_1 = y[-n])
y <- as.vector(all[, 2])
lagX <- as.matrix(all[, (1:order + 2)])
lagY <- as.matrix(all[, (1:order + 2 + order)])
fm <- lm(y ~ lagY + lagX)
rval <- lmtest::waldtest(fm, 2, ...)
attr(rval, "heading") <- c("Granger causality test\n", paste("Model 1: ",
ynam, " ~ ", "Lags(", ynam, ", 1:", order, ") + Lags(",
xnam, ", 1:", order, ")\nModel 2: ", ynam, " ~ ", "Lags(",
ynam, ", 1:", order, ")", sep = ""))
rval
}
现在 运行 测试的功能。
f_Rui <- function(data, Lag){
nr <- nrow(data)
nc <- ncol(data)
corr3 <- matrix(0, nrow = nr - Lag, ncol = nc)
data3 <- matrix(0, nrow = Lag + 1L, ncol = nc)
data2 <- matrix(0, nrow = Lag + 1L, ncol = nc - 1L)
for(i in 1:(nr - Lag)) {
corr2 <- matrix(0, nrow = nc, ncol = nc - 1L)
data3[] <- data[i:(i + Lag), ]
for(j in 1:nc) {
corr <- integer(nc - 1L)
data2[] <- data3[, -j]
for(k in 1:(nc - 1L)){
res <- tryCatch(
grangertest(x = data2[, k], y = data3[, j], order = 1, na.action = na.omit),
error = function(e) e
)
if(!inherits(res, "error") && !is.na(res[['Pr(>F)']][2]) && res[['Pr(>F)']][2] <= 0.05) {
corr[k] <- 1L
}
}
corr2[j, ] <- corr
}
corr3[i, ] <- rowSums(corr2)
}
corr3
}
结果是 identical
,时机也好得多。
t1 <- system.time({
res <- f_Rui(data, 5L)
})
identical(corr3, res)
#[1] TRUE
times <- rbind(t0, t1)
t(t(times)/t1)
# user.self sys.self elapsed user.child sys.child
#t0 4.682908 1.736111 4.707783 NaN NaN
#t1 1.000000 1.000000 1.000000 NaN NaN
有一个包含三个 for 循环的代码 运行 包含足够缺失值的数据。主要问题是 长得令人无法接受 运行 的时间似乎至少需要一个多月 尽管我尽量让我的电脑在一天中的大部分时间都保持打开状态。
下面的结构是 100% 正确的,与我在使用非常少的数据点进行测试时试图实现的目标相比。但是随着列数和行数分别变为 2781 和 280,我认为这需要很长时间,尽管我 100% 确定这是 运行ning 正确的,即使我看到更新的环境 window R-Studio 每次我刷新它。
我的数据也有很多缺失值,大概是 40% 左右。我认为这也使计算时间变得非常长。
数据维度为315 * 2781。 但是,我正在尝试以 280 * 2781 矩阵形式实现输出。
我可以得到帮助以减少以下代码的 运行 时间吗? 如果可以的话,将不胜感激!
options(java.parameters = "- Xmx8000m")
memory.limit(size=8e+6)
data=read.table("C:/Data/input.txt",T,sep="\t");
data=data.frame(data)[,-1]
corr<-NULL
corr2<-NULL
corr3<-NULL
for(i in 1:280)
{
corr2<-NULL
for(j in 1:2781)
{
data2<-data[,-j]
corr<-NULL
for(k in 1:2780)
{
ifelse((is.error(grangertest(data[i:(i+35),j] ~ data2[i:(i+35),k], order = 1, na.action = na.omit)$P[2])==TRUE) || (grangertest(data[i:(i+35),j] ~ data2[i:(i+35),k], order = 1, na.action = na.omit)$P[2])>0.05|| (is.na(grangertest(data[i:(i+35),j] ~ data2[i:(i+35),k], order = 1, na.action = na.omit)$P[2])==TRUE),corr<-cbind(corr,0),corr<-cbind(corr,1))
}
corr2<-rbind(corr2,corr)
}
corr3<-rbind(corr3,rowSums(corr2))
}
我的数据片段如下:
> dput(data[1:30, 1:10])
structure(c(0.567388170165941, 0.193093325709924, 0.965938209090382,
0.348295788047835, 0.496113050729036, 0.0645384560339153, 0.946750836912543,
0.642093246569857, 0.565092500532046, 0.0952424583956599, 0.444063827162609,
0.709971546428278, 0.756330407923087, 0.601746253203601, 0.341865634545684,
0.953319212188944, 0.0788604547269642, 0.990508111426607, 0.35519331949763,
0.697004508692771, 0.285368352662772, 0.274287624517456, 0.575733694015071,
0.12937490013428, 0.00476219342090189, 0.684308280004188, 0.189448777819052,
0.615732178557664, 0.404873769031838, 0.357331350911409, 0.565436001634225,
0.380773033713922, 0.348490287549794, 0.0473814208526164, 0.389312234241515,
0.562123290728778, 0.30642102798447, 0.911173274740577, 0.566258994862437,
0.837928073247895, 0.107747194357216, 0.253737836843356, 0.651503744535148,
0.187739939894527, 0.951192815322429, 0.740037888288498, 0.0817571650259197,
0.740519099170342, 0.601534485351294, 0.120900869136676, 0.415282893227413,
0.591146623482928, 0.698511375114322, 0.08557975362055, 0.139396222075447,
0.303953414550051, 0.0743798329494894, 0.0293272000271827, 0.335832208395004,
0.665010208031163, 0.0319741254206747, 0.678886031731963, 0.154593498911709,
0.275712370406836, 0.828485634410754, 0.921500099124387, 0.651940459152684,
0.00574865937232971, 0.82236105017364, 0.55089360428974, 0.209424041677266,
0.861786168068647, 0.672873278381303, 0.301034058211371, 0.180336013436317,
0.481560358777642, 0.901354183442891, 0.986482679378241, 0.90117057505995,
0.476308439625427, 0.638073122361675, 0.27481731469743, 0.689271076582372,
0.324349449947476, 0.56620552809909, 0.867861548438668, 0.78374840435572,
0.0668482843320817, 0.276675389613956, 0.990600393852219, 0.990227151894942,
0.417612489778548, 0.391012848122045, 0.348758921027184, 0.0799746725242585,
0.88941288786009, 0.511429069796577, 0.0338982092216611, 0.240115304477513,
0.0268365524243563, 0.67206134647131, 0.816803207853809, 0.344421110814437,
0.864659120794386, 0.84128700569272, 0.116056860191748, 0.303730394458398,
0.48192183743231, 0.341675494797528, 0.0622653553728014, 0.823110743425786,
0.483212807681412, 0.968748248415068, 0.953057422768325, 0.116025703493506,
0.327919023809955, 0.590675016632304, 0.832283023977652, 0.342327545629814,
0.576901035616174, 0.942689201096073, 0.59300709143281, 0.565881528891623,
0.600007816683501, 0.133237989619374, 0.873827134957537, 0.744597729761153,
0.755133397178724, 0.0245723063126206, 0.97799762734212, 0.636845340020955,
0.73828601022251, 0.644093665992841, 0.57204390084371, 0.496023115236312,
0.703613247489557, 0.149237307952717, 0.0871439634356648, 0.0632112647872418,
0.83703236351721, 0.433215840253979, 0.430483993608505, 0.924051651498303,
0.913056606892496, 0.914889572421089, 0.215407102368772, 0.76880722376518,
0.269207723205909, 0.865548757137731, 0.28798541566357, 0.391722843516618,
0.649806497385725, 0.459413924254477, 0.907465039752424, 0.48731207777746,
0.554472463205457, 0.779784266138449, 0.566323830280453, 0.208658932242543,
0.958056638715789, 0.61858483706601, 0.838681482244283, 0.286310768220574,
0.895410191034898, 0.448722236789763, 0.297688684659079, 0.33291415637359,
0.0115265529602766, 0.850776052568108, 0.764857453294098, 0.469730701530352,
0.222089925780892, 0.0496484278701246, 0.32886885642074, 0.356443469878286,
0.612877089297399, 0.727906176587567, 0.0292073413729668, 0.429160050582141,
0.232313714455813, 0.678631312213838, 0.642334033036605, 0.99107678886503,
0.542449960019439, 0.835914565017447, 0.52798323193565, 0.303808332188055,
0.919654499506578, 0.944237019168213, 0.52141259261407, 0.794379767496139,
0.72268659202382, 0.114752230467275, 0.175116094760597, 0.437696389388293,
0.852590200025588, 0.511136321350932, 0.30879021063447, 0.174206420546398,
0.14262041519396, 0.375411552377045, 0.0204910831525922, 0.852757754037157,
0.631567053496838, 0.475924106314778, 0.508682047016919, 0.307679089019075,
0.70284536993131, 0.851252349093556, 0.0868967010173947, 0.586291917832568,
0.0529140203725547, 0.440692059928551, 0.207642213441432, 0.777513341512531,
0.141496006632224, 0.548626560717821, 0.419565241318196, 0.0702310993801802,
0.499403427587822, 0.189343606121838, 0.370725362794474, 0.888076487928629,
0.83070912421681, 0.466137421084568, 0.177098380634561, 0.91202046489343,
0.142300580162555, 0.823691181838512, 0.41561916610226, 0.939948018174618,
0.806491429451853, 0.795849160756916, 0.566376683535054, 0.36814984655939,
0.307756055146456, 0.602875682059675, 0.506007500691339, 0.538658684119582,
0.420845189364627, 0.663071365095675, 0.958144341595471, 0.793743418296799,
0.983086514985189, 0.266262857476249, 0.817585011478513, 0.122843299992383,
0.989197303075343, 0.71584410732612, 0.500571243464947, 0.397394519997761,
0.659465527161956, 0.459530522814021, 0.602246116613969, 0.250076721422374,
0.17533828667365, 0.6599256307818, 0.184704560553655, 0.15679649473168,
0.513444944983348, 0.205572377191857, 0.430164282443002, 0.131548407254741,
0.914019819349051, 0.935795902274549, 0.857401241315529, 0.977940042736009,
0.41389597626403, 0.179183913161978, 0.431347143370658, 0.477178965462372,
0.121315707685426, 0.107695729471743, 0.634954946814105, 0.859707030234858,
0.855825762730092, 0.708672808250412, 0.674073817208409, 0.672288877889514,
0.622144045541063, 0.433355041313916, 0.952878215815872, 0.229569894727319,
0.289388840552419, 0.937473804224283, 0.116283216979355, 0.659604362910613,
0.240837284363806, 0.726138337515295, 0.68390148691833, 0.381577257299796,
0.899390475358814, 0.26472729514353, 0.0383855854161084, 0.855232689995319,
0.655799814499915, 0.335587574867532, 0.163842789363116, 0.0353666560258716,
0.048316186061129), .Dim = c(30L, 10L))
我只将内部循环转换为 mapply
并进行了快速速度测试:
library(lmtest)
data <- matrix(runif(315*2781), nrow = 315)
get01 <- function(x, y) {
try(gt <- grangertest(x ~ y, order = 1, na.action = na.omit)$P[2])
if (exists("gt")) {
if (gt > 0.05 || is.na(gt)) {
return(0)
} else {
return(1)
}
} else {
return(0)
}
}
i <- 1; j <- 1
system.time(corr <- mapply(function(k) {get01(data[i:(i+35),j], data[i:(i+35),k])}, (1:2781)[-j]))
#> user system elapsed
#> 21.505 0.014 21.520
它需要执行 mapply
778680 次,因此大约需要 200 天。您要么需要使用 Granger 测试的不同方法,要么需要多个核心。这是替换完整循环的命令:
corr3 <- t(mapply(function(i) colSums(mapply(function(j) mapply(function(k) {get01(data[i:(i+35),j], data[i:(i+35),k])}, (1:2781)[-j]), 1:2781)), 1:280))
将第一个 mapply
替换为 simplify2array(parLapply
以并行化:
library(parallel)
cl <- makeCluster(detectCores())
clusterExport(cl, list("data", "get01"))
parLapply(cl, cl, function(x) require(lmtest))
corr3 <- t(simplify2array(parLapply(cl, 1:280, function(i) colSums(mapply(function(j) mapply(function(k) {get01(data[i:(i+35),j], data[i:(i+35),k])}, (1:2781)[-j]), 1:2781)))))
stopCluster(cl)
这是一个未并行化的版本,可将问题中的代码加速 4 倍以上。
问题代码中的一些瓶颈很容易检测到:
- 矩阵
corr?
在循环内扩展。解决方法是提前预留内存; - 当只需要一次时,测试
grangertest
每次内部迭代调用 3 次; - To
cbind
with0
or1
实际上是在创建向量,而不是矩阵。
下面是题目代码和下面函数的对比测试
library(lmtest)
# avoids loading an extra package
is.error <- function(x){
inherits(x, c("error", "try-error"))
}
Lag <- 5L
nr <- nrow(data)
nc <- ncol(data)
t0 <- system.time({
corr<-NULL
corr2<-NULL
corr3<-NULL
for(i in 1:(nr - Lag))
{
corr2<-NULL
data3 <- data[i:(i + Lag), ]
for(j in 1:nc)
{
data2<-data[,-j]
corr<-NULL
for(k in 1:(nc - 1L))
{
ifelse((is.error(grangertest(data[i:(i+Lag),j] ~ data2[i:(i+Lag),k], order = 1, na.action = na.omit)$P[2])==TRUE) ||
(grangertest(data[i:(i+Lag),j] ~ data2[i:(i+Lag),k], order = 1, na.action = na.omit)$P[2])>0.05 ||
(is.na(grangertest(data[i:(i+Lag),j] ~ data2[i:(i+Lag),k], order = 1, na.action = na.omit)$P[2])==TRUE),
corr<-cbind(corr,0),
corr<-cbind(corr,1)
)
}
corr2 <- rbind(corr2, corr)
}
corr3<-rbind(corr3, rowSums(corr2))
}
corr3
})
我将使用lmtest::grangertest
的简化版本。
granger_test <- function (x, y, order = 1, na.action = na.omit, ...) {
xnam <- deparse(substitute(x))
ynam <- deparse(substitute(y))
n <- length(x)
all <- cbind(x = x[-1], y = y[-1], x_1 = x[-n], y_1 = y[-n])
y <- as.vector(all[, 2])
lagX <- as.matrix(all[, (1:order + 2)])
lagY <- as.matrix(all[, (1:order + 2 + order)])
fm <- lm(y ~ lagY + lagX)
rval <- lmtest::waldtest(fm, 2, ...)
attr(rval, "heading") <- c("Granger causality test\n", paste("Model 1: ",
ynam, " ~ ", "Lags(", ynam, ", 1:", order, ") + Lags(",
xnam, ", 1:", order, ")\nModel 2: ", ynam, " ~ ", "Lags(",
ynam, ", 1:", order, ")", sep = ""))
rval
}
现在 运行 测试的功能。
f_Rui <- function(data, Lag){
nr <- nrow(data)
nc <- ncol(data)
corr3 <- matrix(0, nrow = nr - Lag, ncol = nc)
data3 <- matrix(0, nrow = Lag + 1L, ncol = nc)
data2 <- matrix(0, nrow = Lag + 1L, ncol = nc - 1L)
for(i in 1:(nr - Lag)) {
corr2 <- matrix(0, nrow = nc, ncol = nc - 1L)
data3[] <- data[i:(i + Lag), ]
for(j in 1:nc) {
corr <- integer(nc - 1L)
data2[] <- data3[, -j]
for(k in 1:(nc - 1L)){
res <- tryCatch(
grangertest(x = data2[, k], y = data3[, j], order = 1, na.action = na.omit),
error = function(e) e
)
if(!inherits(res, "error") && !is.na(res[['Pr(>F)']][2]) && res[['Pr(>F)']][2] <= 0.05) {
corr[k] <- 1L
}
}
corr2[j, ] <- corr
}
corr3[i, ] <- rowSums(corr2)
}
corr3
}
结果是 identical
,时机也好得多。
t1 <- system.time({
res <- f_Rui(data, 5L)
})
identical(corr3, res)
#[1] TRUE
times <- rbind(t0, t1)
t(t(times)/t1)
# user.self sys.self elapsed user.child sys.child
#t0 4.682908 1.736111 4.707783 NaN NaN
#t1 1.000000 1.000000 1.000000 NaN NaN