如何循环模型列表以获得斜率估计
How can I loop a list of models to get slope estimate
我有一个由以下代码指定的模型列表:
varlist <- list("PRS_Kunkle", "PRS_Kunkle_e07",
"PRS_Kunkle_e06","PRS_Kunkle_e05", "PRS_Kunkle_e04",
"PRS_Kunkle_e03", "PRS_Kunkle_e02", "PRS_Kunkle_e01",
"PRS_Kunkle_e00", "PRS_Jansen", "PRS_deroja_KANSL")
PRS_age_pacc3 <- lapply(varlist, function(x) {
lmer(substitute(z_pacc3_ds ~ i*AgeAtVisit + i*I(AgeAtVisit^2) +
APOE_score + gender + EdYears_Coded_Max20 +
VisNo + famhist + X1 + X2 + X3 + X4 + X5 +
(1 |family/DBID),
list(i=as.name(x))), data = WRAP_all, REML = FALSE)
})
我想获得每个模型在不同年龄点的 PRS 斜率。我该如何编写代码来实现这个目标?没有循环,原始代码应该是:
test_stat1 <- simple_slopes(PRS_age_pacc3[[1]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat2 <- simple_slopes(PRS_age_pacc3[[2]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat3 <- simple_slopes(PRS_age_pacc3[[3]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat4 <- simple_slopes(PRS_age_pacc3[[4]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat5 <- simple_slopes(PRS_age_pacc3[[5]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat6 <- simple_slopes(PRS_age_pacc3[[6]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat7 <- simple_slopes(PRS_age_pacc3[[7]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat8 <- simple_slopes(PRS_age_pacc3[[8]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat9 <- simple_slopes(PRS_age_pacc3[[9]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat10 <- simple_slopes(PRS_age_pacc3[[10]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat11 <- simple_slopes(PRS_age_pacc3[[11]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
library(lme4)
library(reghelper)
set.seed(101)
## add an additional factor variable so we can use it for an interaction
sleepstudy$foo <- factor(sample(LETTERS[1:3], size = nrow(sleepstudy),
replace = TRUE))
m1 <- lmer(Reaction ~ Days*foo + I(Days^2)*foo + (1|Subject), data = sleepstudy)
s1 <- simple_slopes(m1, levels=list(Days = c(5, 10, 15)))
查看这些结果,s1
是一个包含 6 行(foo
的级别数 × 指定的 Days
值的数量)和 5 列(Days
, foo
, 估计, 标准误差, t 值).
最简单的方法:
res <- list()
for (i in seq_along(varlist)) {
res[[i]] <- simple_slopes(model_list[[i]], ...) ## add appropriate args here
}
res <- do.call("rbind", res) ## collapse elements to a single data frame
## add an identifier column
res_final <- data.frame(model = rep(varlist, each = nrow(res[[1]])), res)
如果你想更漂亮,你可以用合适的 lapply
替换 for
循环。如果你想比那更酷:
library(tidyverse)
(model_list
%>% setNames(varlist)
## map_dfr runs the function on each element, collapses results to
## a single data frame. `.id="model"` adds the names of the list elements
## (set in the previous step) as a `model` column
%>% purrr::map_dfr(simple_slopes, ... <extra args here>, .id = "model")
)
顺便说一句,当模型中也有二次项时,我会非常小心 simple_slopes
。计算出的斜率(大概)仅适用于模型中任何其他连续变量为零的情况。您可能希望像 Schielzeth 2010 Methods in Ecology and Evolution(“改进的简单方法...”)
中那样将变量居中
我有一个由以下代码指定的模型列表:
varlist <- list("PRS_Kunkle", "PRS_Kunkle_e07",
"PRS_Kunkle_e06","PRS_Kunkle_e05", "PRS_Kunkle_e04",
"PRS_Kunkle_e03", "PRS_Kunkle_e02", "PRS_Kunkle_e01",
"PRS_Kunkle_e00", "PRS_Jansen", "PRS_deroja_KANSL")
PRS_age_pacc3 <- lapply(varlist, function(x) {
lmer(substitute(z_pacc3_ds ~ i*AgeAtVisit + i*I(AgeAtVisit^2) +
APOE_score + gender + EdYears_Coded_Max20 +
VisNo + famhist + X1 + X2 + X3 + X4 + X5 +
(1 |family/DBID),
list(i=as.name(x))), data = WRAP_all, REML = FALSE)
})
我想获得每个模型在不同年龄点的 PRS 斜率。我该如何编写代码来实现这个目标?没有循环,原始代码应该是:
test_stat1 <- simple_slopes(PRS_age_pacc3[[1]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat2 <- simple_slopes(PRS_age_pacc3[[2]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat3 <- simple_slopes(PRS_age_pacc3[[3]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat4 <- simple_slopes(PRS_age_pacc3[[4]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat5 <- simple_slopes(PRS_age_pacc3[[5]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat6 <- simple_slopes(PRS_age_pacc3[[6]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat7 <- simple_slopes(PRS_age_pacc3[[7]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat8 <- simple_slopes(PRS_age_pacc3[[8]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat9 <- simple_slopes(PRS_age_pacc3[[9]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat10 <- simple_slopes(PRS_age_pacc3[[10]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
test_stat11 <- simple_slopes(PRS_age_pacc3[[11]], levels=list(AgeAtVisit=c(55,60,65,70,75,80)))
library(lme4)
library(reghelper)
set.seed(101)
## add an additional factor variable so we can use it for an interaction
sleepstudy$foo <- factor(sample(LETTERS[1:3], size = nrow(sleepstudy),
replace = TRUE))
m1 <- lmer(Reaction ~ Days*foo + I(Days^2)*foo + (1|Subject), data = sleepstudy)
s1 <- simple_slopes(m1, levels=list(Days = c(5, 10, 15)))
查看这些结果,s1
是一个包含 6 行(foo
的级别数 × 指定的 Days
值的数量)和 5 列(Days
, foo
, 估计, 标准误差, t 值).
最简单的方法:
res <- list()
for (i in seq_along(varlist)) {
res[[i]] <- simple_slopes(model_list[[i]], ...) ## add appropriate args here
}
res <- do.call("rbind", res) ## collapse elements to a single data frame
## add an identifier column
res_final <- data.frame(model = rep(varlist, each = nrow(res[[1]])), res)
如果你想更漂亮,你可以用合适的 lapply
替换 for
循环。如果你想比那更酷:
library(tidyverse)
(model_list
%>% setNames(varlist)
## map_dfr runs the function on each element, collapses results to
## a single data frame. `.id="model"` adds the names of the list elements
## (set in the previous step) as a `model` column
%>% purrr::map_dfr(simple_slopes, ... <extra args here>, .id = "model")
)
顺便说一句,当模型中也有二次项时,我会非常小心 simple_slopes
。计算出的斜率(大概)仅适用于模型中任何其他连续变量为零的情况。您可能希望像 Schielzeth 2010 Methods in Ecology and Evolution(“改进的简单方法...”)