Row Wise 比较两个 pandas 数据框

Rowise compare two pandas dataframes

我有两个 pandas 数据帧

flows:
------
sourceIPAddress     destinationIPAddress    flowStartMicroseconds       flowEndMicroseconds 
163.193.204.92      40.8.121.226            2021-05-01 07:00:00.113     2021-05-01 07:00:00.113962
104.247.103.181     163.193.124.92          2021-05-01 07:00:00.074     2021-05-01 07:00:00.101026
17.254.170.53       163.193.124.133         2021-05-01 07:00:00.077     2021-05-01 07:00:00.083874
18.179.96.152       203.179.250.96          2021-05-01 07:00:00.112     2021-05-01 07:00:00.098296
133.103.144.34      13.154.212.11           2021-05-01 07:00:00.101     2021-05-01 07:00:00.112013

attacks:
--------
datetime                    srcIP           dstIP
2021-05-01 07:00:00.055210  188.67.130.72   133.92.239.153   
2021-05-01 07:00:00.055500  45.100.34.74    203.179.180.153   
2021-05-01 07:00:00.055351  103.113.29.26   163.193.242.75   
2021-05-01 07:00:00.056209  128.215.229.101 163.193.94.194   
2021-05-01 07:00:00.055258  45.111.22.11    163.193.138.139   

我想检查 flows 的每一行是否与 attacks 的任何行匹配,其中

attacks[srcIP] == flows[srcIP] || attacks[srcIP] == flows[destIP]
&&
attacks[destIP] == flows[srcIP] || attacks[destIP] == flows[destIP]
&&
attacks[datetime] between flows[flowStartMicroseconds] and flows[flowEndMicroseconds]

有没有比遍历它更有效的方法?

编辑: 数据框非常大。我包括了每个的 head()。

flows = {'sourceIPAddress': {510: '163.193.204.92',
  564: '104.247.103.181',
  590: '17.254.170.53',
  599: '18.179.96.152',
  1149: '133.103.144.34'},
 'destinationIPAddress': {510: '40.8.121.226',
  564: '163.193.124.92',
  590: '163.193.124.133',
  599: '203.179.250.96',
  1149: '13.154.212.11'},
 'flowStartMicroseconds': {510: Timestamp('2021-05-01 07:00:00.113000'),
  564: Timestamp('2021-05-01 07:00:00.074000'),
  590: Timestamp('2021-05-01 07:00:00.077000'),
  599: Timestamp('2021-05-01 07:00:00.112000'),
  1149: Timestamp('2021-05-01 07:00:00.101000')},
 'flowEndMicroseconds': {510: Timestamp('2021-05-01 07:00:00.113962'),
  564: Timestamp('2021-05-01 07:00:00.083874'),
  590: Timestamp('2021-05-01 07:00:00.098296'),
  599: Timestamp('2021-05-01 07:00:00.112013'),
  1149: Timestamp('2021-05-01 07:00:00.101026')}}

attacks = {'datetime': {0: Timestamp('2021-05-01 07:00:00.055210'),
  1: Timestamp('2021-05-01 07:00:00.055500'),
  2: Timestamp('2021-05-01 07:00:00.055351'),
  3: Timestamp('2021-05-01 07:00:00.056209'),
  4: Timestamp('2021-05-01 07:00:00.055258')},
 'srcIP': {0: '188.67.130.72',
  1: '45.100.34.74',
  2: '103.113.29.26',
  3: '128.215.229.101',
  4: '45.111.22.11'},
 'dstIP': {0: '133.92.239.153',
  1: '203.179.180.153',
  2: '163.193.242.75',
  3: '163.193.94.194',
  4: '163.193.138.139'}}

在两个数据框之间使用左连接合并,然后查找数据的交集。

我不确定性能,但我会按以下方式进行。

  1. 为此只有两种IP类型攻击IP和流量IP。所以我会重新索引两个 DF 以具有以下格式

    flow_df : (flow_IPAddress, flowStartMicroseconds, flowEndMicroseconds)

    attack_df: (attack_IP, 日期时间)

  2. 然后我会使用内部连接合并它们 (left_on = "flow_IPAddress", right_on = "attack_IP")

  3. 然后我会查询结果以仅过滤有效的时间戳(例如,使用您在上面写的语句。)

那么生成的 df 将如下所示:


flowIPAddress            attack_IP            flowStartMicroseconds            flowEndMicroseconds            datetime  
163.193.204.92      40.8.121.226            2021-05-01 07:00:00.113     2021-05-01 07:00:00.113962 2021-05-01 07:00:00.055210
104.247.103.181     163.193.124.92          2021-05-01 07:00:00.074     2021-05-01 07:00:00.101026 2021-05-01 07:00:00.055210

注意:如果您想保留 src 和 dst IP,您可以继续上述方法,但要单独考虑每一对。

解决方案:数据库

我的解决方案是将这两个数据帧导入 PostgreSQL 并创建两个用于正向和反向 IP 匹配的新表,然后将它们 UNION ALL 在一起。

两个单连接比一个大连接要快得多。

create table attacks_forward as 
SELECT
flows.*, attacks."label", attacks."sublabel"
FROM
    flows
JOIN attacks 
    ON flows."sourceIPAddress" = attacks."srcIP" 
    and flows."destinationIPAddress" = attacks."dstIP"
    and attacks."datetime" between flows."flowStartMicroseconds" and flows."flowEndMicroseconds";
    
   
create table attacks_backward as 
SELECT
flows.*, attacks."label", attacks."sublabel"
FROM
    flows
JOIN attacks 
    ON flows."sourceIPAddress" = attacks."dstIP" 
    and flows."destinationIPAddress" = attacks."srcIP"
    and attacks."datetime" between flows."flowStartMicroseconds" and flows."flowEndMicroseconds";

create table attacks_flows as 
SELECT * FROM attacks_forward
UNION ALL
SELECT * FROM attacks_backward;