在具有多个自变量的单变量逻辑回归后,将系数、置信区间和优势比存储在一个数据框中
Store coefficients, confidence intervalls and odds ratios in one dataframe after univariate logistic regression with multiple independent variables
数据框看起来像这样(最后是dput
):
A B C D E F G H I J K
<fct> <fct> <fct> <fct> <fct> <fct> <fct> <fct> <fct> <fct> <fct>
1 No ev~ fema~ >=60 <30 B 1 >=150 M 0 >=30 No
2 No ev~ fema~ <60 <30 A 0 <150 B 0 <30 No
3 No ev~ fema~ <60 >=30 A 1 >=150 M 0 <30 No
4 No ev~ fema~ >=60 <30 A 0 >=150 M 0 <30 No
5 No ev~ male <60 >=30 B 1 >=150 B 0 <30 No
6 No ev~ male >=60 <30 A 1 >=150 M 1 >=30 No
7 event fema~ >=60 >=30 A 1 >=150 B 0 <30 Yes
8 No ev~ fema~ <60 <30 A 0 >=150 M 0 >=30 No
9 No ev~ male >=60 <30 A 0 >=150 B 1 <30 No
10 No ev~ male >=60 <30 B 1 >=150 M 0 <30 No
# ... with 140 more rows
我执行单变量逻辑回归,其中 A
是因变量,其他 B:K
是自变量。都是因素。
此代码有效:
lapply(c("B","C","D","E","F","G","H","I","J", "K"),
function(var) {
formula <- as.formula(paste("A ~", var))
res.logist <- glm(formula, data = df_fake, family = binomial)
summary(res.logist)
})
但是输出中有一堆信息(每一个都有用)但我想知道这种输出在 R 中是否可行:
期望输出:
Estimate Std. Error z value Pr(>|z|) OR lowerlimit upperlimit
Bmale 0.2941 0.6917 0.425 0.671 ? ? ?
C>=60 0.5653 0.7269 0.778 0.437
D>=30 1.7579 0.7061 2.489 0.0128 *
EB 0.7302 0.6929 1.054 0.292
F1 1.4508 0.7298 1.988 0.0468 *
G>=150 0.1238 0.6917 0.179 0.858
HM 1.0223 0.7274 1.405 0.16
I1 0.5325 0.7351 0.724 0.469
J>=30 0.6581 0.7372 0.893 0.372
KYes 5.0814 0.9917 5.124 0.00000029909 ***
数据:
df <- structure(list(A = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("No event",
"event"), class = "factor"), B = structure(c(1L, 1L, 1L, 1L,
2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L,
2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L,
2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L,
2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L,
2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L,
1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L,
2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L,
1L, 1L), .Label = c("female", "male"), class = "factor"), C = structure(c(2L,
1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L,
1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L,
2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L,
2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L,
2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L,
2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L,
1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 2L), .Label = c("<60", ">=60"), class = "factor"),
D = structure(c(1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L), .Label = c("<30", ">=30"), class = "factor"),
E = structure(c(2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L,
1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L,
1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L,
2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L,
1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
1L, 1L, 1L, 1L), .Label = c("A", "B"), class = "factor"),
F = structure(c(2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L,
1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L,
1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L,
2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L), .Label = c("0", "1"), class = "factor"),
G = structure(c(2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L,
1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L,
1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L,
2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L), .Label = c("<150", ">=150"), class = "factor"),
H = structure(c(2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L,
2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L,
1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L,
2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L,
2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L), .Label = c("B", "M"), class = "factor"),
I = structure(c(1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L,
2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L,
2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L,
1L, 1L, 1L, 1L), .Label = c("0", "1"), class = "factor"),
J = structure(c(2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L,
2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L), .Label = c("<30", ">=30"), class = "factor"),
K = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 1L), .Label = c("No", "Yes"), class = "factor")), row.names = c(NA,
-150L), class = c("tbl_df", "tbl", "data.frame"))
我不知道有什么功能可以自动执行此操作,但您也可以自己执行。这是获取所需所有系数的代码:
res.logist <- glm(A ~ B, data = df, family = binomial)
res <- tibble(Independant = names(res.logist[[1]])[2],
Estimate = res.logist[[1]][2],
'Std. Error' = summary(res.logist)$coefficients[2,2],
'z value' = summary(res.logist)$coefficients[2,3],
'Pr(>|z|)' = summary(res.logist)$coefficients[2,4],
OR = exp(coef(res.logist))[2],
lowerlimit = confint(res.logist)[2,1],
upperlimit = confint(res.logist)[2,2])
您可以包含此内部函数并将每个交互附加到函数外部的数据框。
@TarJae。也许这可能会有所帮助。
您可以使用 purrr
中的 map_df
遍历所有自变量。
如果您使用 broom
中的 tidy
,您可以获得所需的输出。如果将 conf.int
添加到 TRUE
,您将获得置信区间(默认水平为 0.95)。
您还可以通过 estimate
的 exp
获得相对优势比。 tidy
的 exponentiate
选项只会显示指数系数。
library(tidyverse)
library(broom)
map_df(set_names(names(df)[names(df) != "A"]),
~glm(formula(paste("A ~ ", .x)), data = df, family = binomial) %>%
tidy(conf.int = TRUE)) %>%
filter(term != "(Intercept)") %>%
mutate(OR = exp(estimate))
输出
term estimate std.error statistic p.value conf.low conf.high OR
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Bmale 0.294 0.692 0.425 0.671 -1.07 1.73 1.34
2 C>=60 0.565 0.727 0.778 0.437 -0.808 2.15 1.76
3 D>=30 1.76 0.706 2.49 0.0128 0.364 3.22 5.80
4 EB 0.730 0.693 1.05 0.292 -0.640 2.16 2.08
5 F1 1.45 0.730 1.99 0.0468 0.0724 3.04 4.27
6 G>=150 0.124 0.692 0.179 0.858 -1.24 1.56 1.13
7 HM 1.02 0.727 1.41 0.160 -0.351 2.61 2.78
8 I1 0.532 0.735 0.724 0.469 -1.07 1.92 1.70
9 J>=30 0.658 0.737 0.893 0.372 -0.943 2.05 1.93
10 KYes 5.08 0.992 5.12 0.000000299 3.31 7.31 161.
数据框看起来像这样(最后是dput
):
A B C D E F G H I J K
<fct> <fct> <fct> <fct> <fct> <fct> <fct> <fct> <fct> <fct> <fct>
1 No ev~ fema~ >=60 <30 B 1 >=150 M 0 >=30 No
2 No ev~ fema~ <60 <30 A 0 <150 B 0 <30 No
3 No ev~ fema~ <60 >=30 A 1 >=150 M 0 <30 No
4 No ev~ fema~ >=60 <30 A 0 >=150 M 0 <30 No
5 No ev~ male <60 >=30 B 1 >=150 B 0 <30 No
6 No ev~ male >=60 <30 A 1 >=150 M 1 >=30 No
7 event fema~ >=60 >=30 A 1 >=150 B 0 <30 Yes
8 No ev~ fema~ <60 <30 A 0 >=150 M 0 >=30 No
9 No ev~ male >=60 <30 A 0 >=150 B 1 <30 No
10 No ev~ male >=60 <30 B 1 >=150 M 0 <30 No
# ... with 140 more rows
我执行单变量逻辑回归,其中 A
是因变量,其他 B:K
是自变量。都是因素。
此代码有效:
lapply(c("B","C","D","E","F","G","H","I","J", "K"),
function(var) {
formula <- as.formula(paste("A ~", var))
res.logist <- glm(formula, data = df_fake, family = binomial)
summary(res.logist)
})
但是输出中有一堆信息(每一个都有用)但我想知道这种输出在 R 中是否可行:
期望输出:
Estimate Std. Error z value Pr(>|z|) OR lowerlimit upperlimit
Bmale 0.2941 0.6917 0.425 0.671 ? ? ?
C>=60 0.5653 0.7269 0.778 0.437
D>=30 1.7579 0.7061 2.489 0.0128 *
EB 0.7302 0.6929 1.054 0.292
F1 1.4508 0.7298 1.988 0.0468 *
G>=150 0.1238 0.6917 0.179 0.858
HM 1.0223 0.7274 1.405 0.16
I1 0.5325 0.7351 0.724 0.469
J>=30 0.6581 0.7372 0.893 0.372
KYes 5.0814 0.9917 5.124 0.00000029909 ***
数据:
df <- structure(list(A = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("No event",
"event"), class = "factor"), B = structure(c(1L, 1L, 1L, 1L,
2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L,
2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L,
2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L,
2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L,
2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L,
1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L,
2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L,
1L, 1L), .Label = c("female", "male"), class = "factor"), C = structure(c(2L,
1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L,
1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L,
2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L,
2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L,
2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L,
2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L,
1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 2L), .Label = c("<60", ">=60"), class = "factor"),
D = structure(c(1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L), .Label = c("<30", ">=30"), class = "factor"),
E = structure(c(2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L,
1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L,
1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L,
2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L,
1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
1L, 1L, 1L, 1L), .Label = c("A", "B"), class = "factor"),
F = structure(c(2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L,
1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L,
1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L,
2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L), .Label = c("0", "1"), class = "factor"),
G = structure(c(2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L,
1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L,
1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L,
2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L), .Label = c("<150", ">=150"), class = "factor"),
H = structure(c(2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L,
2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L,
1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L,
2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L,
2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L), .Label = c("B", "M"), class = "factor"),
I = structure(c(1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L,
2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L,
2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L,
1L, 1L, 1L, 1L), .Label = c("0", "1"), class = "factor"),
J = structure(c(2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L,
2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L), .Label = c("<30", ">=30"), class = "factor"),
K = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 1L), .Label = c("No", "Yes"), class = "factor")), row.names = c(NA,
-150L), class = c("tbl_df", "tbl", "data.frame"))
我不知道有什么功能可以自动执行此操作,但您也可以自己执行。这是获取所需所有系数的代码:
res.logist <- glm(A ~ B, data = df, family = binomial)
res <- tibble(Independant = names(res.logist[[1]])[2],
Estimate = res.logist[[1]][2],
'Std. Error' = summary(res.logist)$coefficients[2,2],
'z value' = summary(res.logist)$coefficients[2,3],
'Pr(>|z|)' = summary(res.logist)$coefficients[2,4],
OR = exp(coef(res.logist))[2],
lowerlimit = confint(res.logist)[2,1],
upperlimit = confint(res.logist)[2,2])
您可以包含此内部函数并将每个交互附加到函数外部的数据框。
@TarJae。也许这可能会有所帮助。
您可以使用 purrr
中的 map_df
遍历所有自变量。
如果您使用 broom
中的 tidy
,您可以获得所需的输出。如果将 conf.int
添加到 TRUE
,您将获得置信区间(默认水平为 0.95)。
您还可以通过 estimate
的 exp
获得相对优势比。 tidy
的 exponentiate
选项只会显示指数系数。
library(tidyverse)
library(broom)
map_df(set_names(names(df)[names(df) != "A"]),
~glm(formula(paste("A ~ ", .x)), data = df, family = binomial) %>%
tidy(conf.int = TRUE)) %>%
filter(term != "(Intercept)") %>%
mutate(OR = exp(estimate))
输出
term estimate std.error statistic p.value conf.low conf.high OR
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Bmale 0.294 0.692 0.425 0.671 -1.07 1.73 1.34
2 C>=60 0.565 0.727 0.778 0.437 -0.808 2.15 1.76
3 D>=30 1.76 0.706 2.49 0.0128 0.364 3.22 5.80
4 EB 0.730 0.693 1.05 0.292 -0.640 2.16 2.08
5 F1 1.45 0.730 1.99 0.0468 0.0724 3.04 4.27
6 G>=150 0.124 0.692 0.179 0.858 -1.24 1.56 1.13
7 HM 1.02 0.727 1.41 0.160 -0.351 2.61 2.78
8 I1 0.532 0.735 0.724 0.469 -1.07 1.92 1.70
9 J>=30 0.658 0.737 0.893 0.372 -0.943 2.05 1.93
10 KYes 5.08 0.992 5.12 0.000000299 3.31 7.31 161.